Year: Author:

Hendrik Br├╝ckler, David Bommes, Marcel Campen

Developments in the field of parametrization-based quad mesh generation on surfaces have been impactful over the past decade. In this context, an important advance has been the replacement of error-prone rounding in the generation of integer-grid maps, by robust quantization methods. In parallel, parametrization-based hex mesh generation for volumes has been advanced. In this volumetric context, however, the state-of-the-art still relies on fragile rounding, not rarely producing defective meshes, especially when targeting a coarse mesh resolution. We present a method to robustly quantize volume parametrizations, i.e., to determine guaranteed valid choices of integers for 3D integer-grid maps. Inspired by the 2D case, we base our construction on a non-conforming cell decomposition of the volume, a 3D analogue of a T-mesh. In particular, we leverage the motorcycle complex, a recent generalization of the motorcycle graph, for this purpose. Integer values are expressed in a differential manner on the edges of this complex, enabling the efficient formulation of the conditions required to strictly prevent forcing the map into degeneration. Applying our method in the context of hexahedral meshing, we demonstrate that hexahedral meshes can be generated with significantly improved flexibility.

Manish Mandad, Ruizhi Chen, David Bommes, Marcel Campen
GMP 2022

Polycube mapping is an attractive approach for the generation of all-hexahedral meshes with a fully regular interior, i.e. free of internal singular edges or vertices. It is based on determining a low distortion map between the input model and a polycube domain, which then pulls back the regular voxel grid to form a hexahedral mesh for the model. Automatically finding an appropriate polycube domain for a given model, however, is a challenging problem. Existing algorithms are either very sensitive to the embedding and orientation of the input model, restricted to only subclasses of possible domains, or depend crucially on some initialization because they rely on a non-convex optimization formulation. This can easily lead to unsatisfactory and unnecessary corners and edges in the polycube structure. We present a novel approach to the problem of finding high-quality polycube domains. It is based on an entirely intrinsic formulation as a mixed integer optimization problem, which can be tackled by solving a series of simple convex problems, each of which can be solved to the global optimum. Experiments demonstrate that our method avoids many of the undesired corners and surface irregularities common to many previous methods.

Previous Year (2021)