
Eurographics Symposium on Geometry Processing 2020
Q. Huang and A. Jacobson
(Guest Editors)

Volume 39 (2020), Number 5

Integer-Grid Sketch Simplification and Vectorization

Tibor Stanko1, Mikhail Bessmeltsev2, David Bommes3 and Adrien Bousseau1

1 Université Côte d’Azur, Inria
2 Université de Montréal

3 University of Bern

a) input line drawing and mask b) stroke-aligned parametrization c) output curve network

a) input line drawing and mask b) stroke-aligned parametrization c) output curve network

a) input line drawing and mask b) stroke-aligned parametrization c) output curve network

a) input line drawing and mask b) stroke-aligned parametrization c) output curve network
a) input line drawing and mask b) stroke-aligned parametrization c) output curve network

a) input line drawing and mask b) stroke-aligned parametrization c) output curve network

a) input line drawing and mask b) stroke-aligned parametrization c) output curve network
a) input line drawing and mask b) stroke-aligned parametrization c) output curve network

a) input line drawing and mask b) stroke-aligned parametrization c) output curve network

a) input line drawing and mask b) stroke-aligned parametrization c) output curve network

Figure 1: Starting from an input line drawing (left), we locally parametrize the sketch as a grid aligned with the strokes (middle). Neighboring
parallel strokes are automatically snapped to the same isoline of the parametrization, while junctions are snapped to grid nodes. This
parametrization facilitates the extraction of a clean network of Bézier curves (right). Using a simple mask, the user can locally specify the
desired amount of simplification in the output (purple scribbles: less simplification, orange scribbles: more simplification). See supplemental
materials for a result without the mask.

Abstract
A major challenge in line drawing vectorization is segmenting the input bitmap into separate curves. This segmentation is
especially problematic for rough sketches, where curves are depicted using multiple overdrawn strokes. Inspired by feature-
aligned mesh quadrangulation methods in geometry processing, we propose to extract vector curve networks by parametrizing the
image with local drawing-aligned integer grids. The regular structure of the grid facilitates the extraction of clean line junctions;
due to the grid’s discrete nature, nearby strokes are implicitly grouped together. We demonstrate that our method successfully
vectorizes both clean and rough line drawings, whereas previous methods focused on only one of those drawing types.

CCS Concepts
• Computing methodologies → Parametric curve and surface models; Reconstruction;

1. Introduction

The goal of sketch vectorization is to convert a bitmap line drawing
into a compact set of parametric curves. Existing methods tackle this
problem in two steps: they first segment the drawing into individual
curves, and then fit a parametric spline on each curve. However, seg-
menting a line drawing is a difficult task, especially in the presence
of thick, over-sketched strokes. In such cases, existing methods tend

to either produce too many curves and misinterpret junctions, or
tend to miss details in an attempt to simplify the drawing.

Our algorithm addresses these challenges by reasoning at the
scale of the entire sketch rather than at the scale of individual curves.
In particular, while prior methods solve multiple, separate curve
parametrization problems, we express sketch vectorization as a
single curve network parametrization problem. This global approach

submitted to Eurographics Symposium on Geometry Processing (2020)



2 Stanko et al. / Integer-Grid Sketch Simplification and Vectorization

a) input sketch

b) curve segmentation
and vectorization
(existing methods)

c) network vectorization
using a fine grid

(our method)

d) network vectorization
using a coarse grid

(our method)

u0=1

u0=0

u1=1

u1=0

u2=0 u2=1

u3=0
u3=1

u4=0 u4=1
u5=0

u5=1
u=4
u=3

u=2

u=1
u=0

v=0 v=1 v=2
v=3

v=4

u=2

u=1

u=0
v=0

v=1
v=2

Figure 2: Intuition behind our approach. Given a bitmap sketch (a),
existing methods segment the drawing into individual curves, each
being parametrized separately (b). We instead align the drawing
with a grid, which parametrizes the entire curve network at once (c).
The scale of the grid gives a direct control over how neighboring
curves get merged together (d, top right of the sketch).

provides increased robustness to over-sketching, and helps locate
junctions.

Fig. 2 illustrates the intuition behind our approach on a simple
sketch composed of several intersecting curves. Existing methods
would segment the drawing and parametrize each curve with index
i with its own parameter ui (Fig. 2b). Our key idea is to instead
segment the drawing into two families of curves roughly aligned
with the two locally-dominant directions of the sketch (red and blue
curves in Fig. 2c). We then assign a single parameter to each of
these directions to obtain a 2D grid-like structure (Fig. 2c, u and v
parameters).

The above construction allows us to parametrize all curves jointly,
without requiring an explicit segmentation of the drawing into in-
dividual curves. To reach this goal, we first need to label pixels as
being part of the first or second family of curves. We perform this
labeling by analyzing local orientations of the drawing, as given by
a smooth frame field aligned with the drawing. We then solve for
a parametrization whose isolines follow the assigned frame field
directions, and extract our curve network from the isolines tangent
to the sketch. We introduce a novel regularization strategy to com-
pute a frame field that captures well acute junctions while being as
orthogonal as possible away from them.

We next constrain this representation further by imposing that
the parameter running transversally to a curve in the drawing takes
on an integer value along that curve. For example, in Fig. 2c, the
u parameter takes on the integer value 2 along the bottom blue
curve, and the value 4 along the top one. This constraint encourages
neighboring parallel strokes to snap to the same integer isoline of

the parametrization, effectively clustering them to form a single
curve in the output. Similarly, this formulation automatically snaps
intersecting curves to a single node of the integer grid, forming
clean T- and X- junctions. The scale of the integer grid provides an
intuitive control over the minimum spacing that we allow between
nearby strokes before considering that they represent the same curve.
A coarser scale yields a more aggressive simplification of the sketch,
as shown in Fig. 2d where two red curves get snapped to the same
isoline v = 2. This scale can even be adjusted locally to capture
varying levels of details (Fig. 11).

While the simple example in Fig. 2 is well captured by a single
integer grid, we cope with more complex configurations – including
non-quad shapes – by restricting the parametrization to a narrow
band of pixels around the strokes. As shown in Fig. 1c, this repre-
sentation forms local grids at junctions, yet adapts to the intricate
topology of entire curve networks.

In summary, we propose to cast line drawing vectorization as
a grid parametrization problem. Our formulation brings several
solutions to common vectorization challenges, including the au-
tomatic discovery of the line drawing topology, the precise re-
construction of junctions, and a direct control over the feature
size under which neighboring strokes get merged together. In con-
trast to existing methods tailored to either clean or rough draw-
ings, we show that our method produces high quality curve net-
works from both types of input. The source code of our imple-
mentation and the supplemental materials are available at https:
//repo-sam.inria.fr/d3/grid-vectorization/.

2. Related work

Here we discuss prior work related to the application we target –
line drawing vectorization. We introduce technical background on
quad-meshing algorithms that inspired our approach in Section 4.

Sketch vectorization. Many line drawing vectorization algorithms
follow a two-step process, where skeletonization or tracing is first
applied to locate the curves of the drawing, which are subsequently
approximated with parametric splines [HT06; NHS*13; DCP17;
PPM18; BF12; NS19]. Nevertheless, skeletonization and tracing
methods often produce spurious branches at junctions or in the
presence of multiple overlapping strokes. Favreau et al. [FLB16]
address this challenge with an optimization procedure that simplifies
the skeleton topology as long as it remains faithful to the drawing.
However, this optimization can only merge consecutive curves, not
parallel ones, which motivated them to use a region-based skeleton
algorithm to locate curves composed of overlapping strokes. While
region-based skeletonization is very effective on rough drawings,
it often removes fine details in clean drawings composed of little
regions, and does not extract open curves. A similar region-based
approach is taken by Chen et al. [CDQM18], where they simplify
the drawing topology by iteratively discarding small narrow regions
formed by adjacent parallel strokes. They remove the remaining
open curves using a heuristic. Unfortunately, that method uses abso-
lute distance thresholds carefully chosen on a per-input basis.

Kim et al. [KWÖG18] propose a deep-learning algorithm to seg-
ment a line drawing into individual curves, effectively bypassing

submitted to Eurographics Symposium on Geometry Processing (2020)

https://repo-sam.inria.fr/d3/grid-vectorization/
https://repo-sam.inria.fr/d3/grid-vectorization/


Stanko et al. / Integer-Grid Sketch Simplification and Vectorization 3

input sketch a) frame field b) parametrization c) extracted graph + segmentation d) final curve network

Figure 3: Overview of our method. Starting with a bitmap line drawing, we first compute a frame field to recover the two local dominant
directions at each pixel (a). We use this field to guide a grid-based parametrization whose isolines snap to strokes, and nodes snap to junctions
(b). Tracing the isolines tangential to the strokes gives a parametrized topological graph of the drawing (c), to which we fit a network of vector
curves (d).

the challenges raised by skeletonization. Following a similar deep-
learning methodology, Guo et al. [GZH*19] propose several deep
networks to perform skeletonization, junction detection, and pre-
diction of the local topology of each junction. These predictions
are then used to guide curve tracing. However, both methods are
designed and trained to process clean drawings and do not directly
generalize to rough sketches (see [GZH*19, Figs. 14, 16]).

Closer to our work is the method by Bessmeltsev and Solomon
[BS19], which vectorizes line drawings by tracing streamlines along
a frame field aligned with the input drawing. Their algorithm first
generates many streamlines of the frame field, and then groups
them together to form the final curve network. However, this last
grouping step does not simplify the drawing topology, and thus tends
to produce many parallel curves in the presence of over-sketched
strokes (Fig. 12). We draw inspiration from their use of a frame
field to guide the vectorization. However, we propose to rely on
a global parametrization rather than on local curve tracing, which
brings robustness to over-sketched strokes.

Our approach also relates to the image vectorization algorithm
of Wei et al. [WZG*19], which relies on a feature-aligned quad-
rangulation to convert photographs into colored meshes. However,
vectorizing line drawings raises different requirements than vec-
torizing photographs. In particular, the sketches we target contain
overdrawn strokes, which we simplify by snapping them to the same
integer isolines of a global parametrization. In contrast, Wei et al.
[WZG*19] only seek to align the mesh to image edges, which they
achieve by local projection. Other aspects of our approach differ to
better account for specificities of line drawings, such as the use of
a frame field to capture non-orthogonal junctions, or the use of a
narrow band surrounding pen strokes to adapt to intricate details.

Bitmap sketch filtering. Rough sketches are often composed of
multiple, nearly parallel strokes. This observation motivated re-
searchers to filter such sketches using anisotropic blurring kernels
[KLC07; CGBG13; BCF*07]. A common idea of these methods is
to orient the blurring kernels according to a vector field tangential
to the strokes. However, tangent vector fields become ill-defined at
junctions, where multiple dominant directions exist. Frame fields
[VCD*16] offer a solution to this challenge by representing two
dominant directions at each point of the drawing, allowing the accu-
rate capture of T- and X-junctions. Singularities of the field can also
capture Y- or high-valence junctions. Several recent methods take
advantage of the frame field representation for sketch processing,
including the aforementioned work of Bessmeltsev and Solomon
[BS19] on line drawing vectorization, and the methods by Iarussi

et al. [IBB15] and Li et al. [LPL*17] for sketch-based modeling.
We take inspiration from this family of work and rely on a frame
field to guide our grid-based parametrization.

While the above sketch filtering methods employ hand-crafted
blurring kernels, Simo-Serra et al. [SISI16; SII18a] showed how very
effective filters can be learned from examples using convolutional
neural networks. Xu et al. [XXM*19] improves on that work by
using a multi-layer discriminator trained with a perceptual loss.
Their network better preserves global structures and fine details.
Nevertheless, these local filters tend to either remove intended lines
or retain spurious parallel strokes, as shown in Fig. 10. Since sketch
filtering is typically a pre-process for sketch vectorization, we see
bitmap filtering methods as largely complementary to ours.

Vector stroke aggregation. While we target the vectorization of
bitmap drawings, our approach relates to the methods that process
vector drawings created with digital devices. In particular, several
algorithms have been proposed to aggregate pen strokes to form
clean vector curves [BTS05; LWH15; LRS18; OK11; LLBG19]. A
common, basic step in those algorithms is to cluster strokes based
on proximity, continuity, or parallelism. While our method does not
have access to individual pen strokes, we express our parametriza-
tion as an integer grid to implicitly cluster nearby parallel strokes
together. As shown in our experiments (Section 7), our method pro-
duces vectorizations of comparable quality to stroke aggregation
algorithms, even though we take as input raster images rather than
more informative vector drawings.

Interactive filtering and vectorization. Distinguishing between
intended details and spurious strokes is an ambiguous task, which
motivates the development of interactive methods where users can
iteratively correct the output of an automatic algorithm. The sys-
tem proposed by Jun et al. [JHWS17] supports several brushes to
merge, split or smooth vectorized regions, but as such is limited to
closed contours. Alternatively, Simo-Serra et al. [SII18b] trained a
deep convolutional neural network to filter sketches conditioned on
user-provided scribbles. Their system supports several brushes to
indicate strokes that should be added to or removed from the filtered
output, but it does not support merging neighboring strokes. Our
vectorization algorithm is the first to offer local control over the
scale at which neighboring strokes should be merged.

3. Overview

Fig. 3 provides a visual overview of our grid-based algorithm for
line drawing vectorization.

submitted to Eurographics Symposium on Geometry Processing (2020)



4 Stanko et al. / Integer-Grid Sketch Simplification and Vectorization

The first step of our approach is to propagate the local stroke
tangents to obtain the two dominant directions at every point in the
vicinity of the drawing (Fig. 3a). We represent this information with
two directions, forming a frame field [VCD*16] over the drawing.
We optimize this frame field to best align with the drawing while
being as smooth as possible. We then assign each direction one of
two labels to locally decompose the drawing into two families of
roughly-parallel curves.

The second step of our approach is to parametrize the two fam-
ilies of curves globally (Fig. 3b). Our target application, sketch
vectorization, imposes several desiderata on this grid-like parame-
trization. First, we would like the isolines of the two parameters, u
and v, to align with the two local dominant directions of the sketch
encoded by the frame field. Second, we would like the curves of the
drawing to snap to integer isolines of the parametrization, which
implicitly groups nearby strokes together and facilitates subsequent
curve extraction. Finally, we would like to offer user control over the
scale of the grid, which defines the minimum spacing under which
nearby strokes get grouped. We express these desiderata as energy
terms in an optimization, which combines discrete and continuous
unknowns.

Our parametrization step assigns each pixel of the drawing to an
integer isoline of a local parametric grid, and assigns each junction
to an integer node. The last step of our approach is to extract the cor-
responding topological graph (Fig. 3c), and convert the associated
pixels into a parametric curve network (Fig. 3d).

In what follows, we call stroke pixels the dark pixels of the input
drawing. Our goal is to convert the input into a set of vector curves.

4. Background on Integer-Grid Parametrization

Our approach bridges two fields of research by showing how the
challenging problem of sketch vectorization can benefit from grid-
based parametrization algorithms developed by the quad-meshing
community [BLP*13]. Many of these algorithms follow a common
three-step procedure, where the dominant directions of the surface
are first estimated by computing a feature-aligned direction field,
this field is then used as a guidance to compute a seamless parame-
trization of the surface, from which integer isolines are extracted
to form the quad mesh. Similarly to our approach, constraining the
parametrization to take integer values along salient feature lines of
the surface is a convenient way to snap the edges of the quad mesh
to these lines [BZK09].

p q
T

T̂

Since complex surfaces often cannot be parametrized
by a single continuous chart, the above algorithms start
by assigning one chart per triangle of the input mesh,
and ensure that they form a globally seamless para-
metrization by enforcing compatibility between their
respective integer grids. Given two adjacent triangles,
their integer grids connect seamlessly if they can be related by a
rotation of an integer multiple of π

2 and an integer translation. The
composition of the integer rotation and translation is called a grid-
preserving transition function:

(ûp, v̂p) = Rk(up,vp)+(i, j),

(ûq, v̂q) = Rk(uq,vq)+(i, j),
(1)

narrow band with cuts sketch in uv space parametrized sketch

output
curves

uv map inverse map

Figure 4: In order to globally parametrize the input line drawing,
each connected component of the narrow band needs to be cut open
into a topological disk. A seamless parametrization is obtained by
constraining the two sides of a cut to be related by a grid-preserving
transition function, see Eq. (1).

where p and q are the vertices shared by the two triangles (see inset),
and Rk denotes rotation by k π

2 . The integer k is often called the
period jump [LVRL06].

The optimal rotation between two adjacent triangles can be de-
duced from the optimized frame field by comparing their respec-
tive frames. The integer translation (i, j) is typically optimized us-
ing mixed-integer solvers. However, enforcing the constraints (1)
naively yields two integer variables per edge, making the optimiza-
tion very slow. Fortunately, many of these variables can be elim-
inated by forming a single chart per connected component of the
mesh, such that interior edges have fixed transition functions. The
only remaining integer variables are then located along boundaries
of this chart – the so-called cut edges – which correspond to dis-
continuities of the parametrization (Fig. 4). One way to build this
chart is to start from a random triangle and connect it to all other
triangles by tracing a dual spanning tree in a breadth-first manner
[BZK09]. Every time the tree crosses an edge, the frame of the trian-
gle it enters is combed, i.e. rotated by a multiple of π

2 such that the
corresponding period jump vanishes, while the integer translation of
the edge is fixed to 0. The number of integer variables can be further
reduced by also eliminating the integer translation along cut edges
that form open paths that do not end at a frame field singularity. We
follow this standard procedure to drastically decrease the number
of integer variables of our problem. For example, it removed more
than 99% integer variables for the windmill sketch shown in Fig. 1.

The last step of grid-based meshing algorithms is to extract a
quad mesh by mapping an integer grid to the input surface using the
inverse of the parametrization. The extraction has to overcome sev-
eral issues, notably inaccuracies due to floating-point arithmetic and
presence of inverted or degenerate parametric triangles. To address
these issues, Ebke et al. [EBCK13] proposed a robust algorithm
using exact predicates. The algorithm starts by mapping grid nodes
(i.e. points with integer coordinates) to the surface, then connects
nearby grid nodes with edges by locally tracing integer isolines, and
finally connects edges into quads. We adopt this approach, even
though only the nodes and edges are relevant in our context.

submitted to Eurographics Symposium on Geometry Processing (2020)



Stanko et al. / Integer-Grid Sketch Simplification and Vectorization 5

5. Pre-Processing

Our method starts with a few pre-processing steps to locate the
strokes, estimate their width, and generate a triangle mesh around
them that will serve as support for the parametrization.

We first identify stroke pixels by thresholding the input image,
using a manual threshold for simplicity. We then compute the L1
distance of each stroke pixel to its closest background pixel, which
provides an estimate of the local stroke width along the stroke cen-
terlines. We turn these local estimates into a global one by averaging
the centerline values over the entire drawing. We refer to this quan-
tity as the average stroke width ω̄, which will serve to adjust the
scale of the parametrization.

Next, we discretize the image space via a triangulation that we
compute using TRIANGLE [She96]. Using a custom triangulation
(rather than pixels) for discretization allows us to decouple the
complexity of the optimization from the resolution of the input
drawing. We set a bound on the size of triangles by requiring the
circumdiameter to be smaller than ω̄/4. We provide results for
different mesh resolutions in the supplemental materials, showing
that the quality of the parametrization decreases with decreasing
mesh resolution.

Finally, we define a narrow band by
selecting triangles with a barycenter at a
distance less than βω̄ from a stroke pixel
(see inset). We use the average stroke
width ω̄ to make the user-specified pa-
rameter β resolution-independent. For clean inputs, we typically use
β between 0.0 and 0.3. Over-sketched inputs require a wider band,
which we obtain using β between 0.5 and 1.2. This restricted triangu-
lation is the domain on which we compute our grid parametrization.

6. Grid-Based Vectorization

We now detail the main components of our method – drawing-
aligned frame field, grid parametrization, and isoline extraction.

6.1. Frame Field

Computation. The first step of our method is to compute a frame
field representing the two dominant directions at each point in the
vicinity of the drawing. We achieve this goal using the energy formu-
lation proposed by Bessmeltsev and Solomon [BS19], which uses
the PolyVector field representation of Diamanti et al. [DVPS14]. In
a nutshell, the energy combines three terms responsible for aligning
the frame field with the strokes of the drawing, smoothing the frame
field away from the strokes, and a regularizer encouraging the frame
field to form orthogonal crosses rather than to collapse to a line field.

However, we have observed that encouraging frame orthogonality
uniformly can degrade results in the presence of sharp angles in the
drawing, as shown in Fig. 5a. Instead, we encourage orthogonality
only where needed using iterative re-weighting of the regulariza-
tion term. We initialize the frame field by setting the regularization
weight to 0 for all vertices. We then update the frame field iteratively,
checking which frames are degenerate at each iteration and incre-
menting their weights by 1. We consider that a frame is degenerate

a) with uniform regularizer b) with our adaptive regularizer

field streamlines
(close-up)

parametrization
(close-up)

output curves

Figure 5: Around junctions with sharp angles, the uniform regu-
larizer of Bessmeltsev and Solomon [BS19] tends to favor orthog-
onality over alignment to strokes, yielding incorrect junctions in
the parametrization (a). Our frame field formulation respects the
alignment constraints near junctions while preventing the field from
collapsing away from them (b). This significantly improves the over-
all quality of vectorizations containing sharp angles. Note that the
frame field is visualized via streamlines in tangent direction only.
See supplemental materials for the input bitmap.

if the angle between the two vectors is less than 30 degrees, or if the
magnitude of one of the vectors is less than 10% of the magnitude
of the other vector. We stop iterating as soon as less than 1% of
frames are degenerate, or when the maximum number of iterations
is reached (set to 100 in our experiments). In practice, this procedure
usually stops after 5 to 10 iterations (see Table 2 for statistics). Each
iteration requires solving a sparse positive-definite least-squares
problem, which we do using the Cholesky factorization. Fig. 5b
shows how our novel adaptive regularization better aligns the frame
field and subsequent parametrization to the drawing even at acute
junctions.

We refer the interested reader to the paper by Bessmeltsev and
Solomon [BS19] for other implementation details.

Orientation labeling. Once computed, we use the frame field to
assign strokes to one of the two dominant local directions. This
labeling will be later used by our parametrization energy to snap the
corresponding coordinate to an integer value. Our goal is to estimate
which direction of the frame field is most aligned with the stroke in
a small neighborhood of each stroke triangle.

To do so, we start two streamlines
from the barycenter of the triangle, and
trace them along the two directions of
the frame field, taking care of applying
rotational part of the transition functions
between triangles (see inset). We stop the tracing when a streamline

submitted to Eurographics Symposium on Geometry Processing (2020)



6 Stanko et al. / Integer-Grid Sketch Simplification and Vectorization

leaves the narrow band or when the distance from the barycenter is
bigger than a threshold, fixed to 4ω̄ in our implementation. We then
count the number of stroke pixels k0,k1 encountered along each
of the streamlines, and assign the stroke triangle to the direction
that covers more stroke pixels. We keep the triangle unlabeled if
the ratio k0/(k0 + k1) ∈ [0,0.5] of number of stroke pixels k0 ≤ k1
covered by the two streamlines is above a threshold, fixed to 0.48 in
our implementation. We provide results for different thresholds in
supplemental materials, showing that our preset improves the snap-
ping of the parametrization to the input curves. As a pre-process,
we apply a morphological dilation of bω̄/4e pixel(s) to the input
drawing to thicken the strokes.

6.2. Parametrization

Equipped with a guidance frame field, the core of our method com-
putes a parametrization of the drawing that maps the sketched lines
to integer parametric isolines (Fig. 3c). We optimize this parametri-
zation according to two energy terms, responsible for aligning the
parametric isolines to the frame field and snapping stroke pixels to
integer isolines. In addition, we constrain the isolines to be contin-
uous over the triangulated narrow band. We now describe each of
these components in detail.

Alignment term. Let φ = [s, t] be the two normalized directions
of the (combed) frame field in a triangle T ∈ T . We seek to find a
map f : c 7→ (u,v) that assigns parametric coordinates to triangle
corners c ∈ C. In order to locally explain the input sketch by a grid,
we would like the two coordinates u and v of the parametrization to
vary most in the directions given by φ. This implies that the Jacobian
J f =

(
∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

)
has to map the sketch-aligned frame φ to the

canonical frame I =
(

1 0
0 1

)
, yielding the energy term

Ealign = ∑
T∈T
‖J f φ̃− I‖2

F. (2)

Here, φ̃ = sφ denotes a scaled frame. The factor s > 0 controls the
scale of the grid: small values of s result in a fine grid, while big
values of s result in a coarse grid. In practice, we make s proportional
to the average stroke width ω̄ such that a bigger scale is used over
thick strokes. We additionally provide user control over the scale
factor by means of a multiplicative factor λ, yielding the expression
s = λω̄. We use λ = 1 for clean drawings and λ > 1 for inputs that
require simplification (see Table 2).

Snapping term. An important intuition behind our method is that
nearby strokes can be grouped together by assigning them to the
same, quantized isoline of the parametrization. A similar goal exists
in quad meshing algorithms that seek to snap integer isolines of the
parametrization to feature lines of the 3D surface [BZK09]. A com-
mon strategy to achieve this goal is to constrain the parametrization
to take on an integer value along those points. However, imposing
this constraint strictly makes the triangles covering neighboring pix-
els collapse to a single line, which yields numerical challenges for
the subsequent extraction of the curve network. We instead express
this constraint as a soft energy term that attracts the constrained

parametrization

extracted curves

µ = 0 µ = 25
(our preset)

µ = 1000

Figure 6: If the snapping term is disabled (µ = 0) the isolines
fail to closely follow the input curves. Too much snapping (µ =
1000) creates degeneracies in the parametrization. We use µ = 25
to balance these two extremes.

parameters of stroke triangles to the value of their nearest integer:

Esnap = ∑
c∈Cs

wsnap‖u− ū‖2 + ∑
c∈Ct

wsnap‖v− v̄‖2, (3)

where Cs and Ct denote the sets of stroke triangle corners assigned
to the s and t directions of the frame field, respectively, and ū and v̄
are auxiliary integer variables associated with each stroke triangle
corner. We reduce the influence of this term away from the strokes
by setting wsnap = exp(−d2/(2σ

2)) where σ = 0.1 and d ∈ [0,1]
denotes the distance to the center line of the stroke, computed as the
normalized distance transform of the binary image.

Integer elimination strategy. While the snapping term introduces
new integer variables, in practice, many are redundant. Consider
a triangle where the u (resp. v) coordinates of two of the corners
get snapped to the same integer value. We could eliminate one of
these variables from the optimization by forcing these two corners to
have equal coordinates, if only we could detect such configurations
beforehand. We achieve this goal by solving a per-triangle parame-
trization problem, which gives us local estimates of the coordinates.
To do so, we transform the triangle such that the two directions of
the frame field map to the vectors (1/s,0) and (0,1/s). We then
force equality between corner coordinates if the distance between
their local estimates is less than 0.5.

While this heuristic might bias the solution towards local deci-
sions, we found it to work well in practice while drastically reducing
the complexity of the optimization. Combined with the elimination
of integer translations described in Section 4, this strategy typically
removes between 95% and 99% of all integer variables.

Final optimization. We compute the parametrization by minimiz-
ing an energy computed as a weighted combination of the alignment
term and the snapping term, with a small L2 regularization:

Eparam = Ealign +µEsnap + ε ∑
c∈C
‖(u,v)‖2, (4)

submitted to Eurographics Symposium on Geometry Processing (2020)



Stanko et al. / Integer-Grid Sketch Simplification and Vectorization 7

β = 0.4

β = 0.8

β = 1.6

λ = 1 λ = 5 λ = 10
input

Figure 7: By letting the user specify the narrow band size β and the
scale multiplier λ, our method provides direct control over the level
of simplification. We demonstrate this feature on a toy example. For
each pair (β,λ) we show the output curves and the parametrization.
The narrow band is shown in green. Please zoom in on the electronic
version of this figure to see the parametrization in detail.

subject to the constraint that the grid-preserving transition functions
(1) are satisfied for the cut edges. In all of our examples, the reg-
ularization weight is fixed to ε = 10−4 and the snapping weight
is fixed to µ = 25, see Fig. 6. To optimize (4), we use the greedy
mixed-integer solver COMISO [BZK12].

Complexity analysis. The computational complexity of Eq. (4)
depends on multiple factors, most importantly topology and ge-
ometry of the input drawing, and the setting of user parameters
β and λ. We can approximately determine the complexity by esti-
mating the number of integer variables in a typical input drawing.
As an illustration, consider
the FISH drawing (inset)
whose narrow band mesh
has 31389 vertices and
55107 triangles. The pa-
rametrization problem (4)
has 62778 scalar variables
and 64 integer variables, out of which 10 are cut integers (Eq. (1)),
and 54 are snapping integers (Eq. (3)). In general, a cut needs to
be added for each singularity, and for each hole in (a connected
component of) the narrow band; each cut contributes two integer
variables. The FISH has three connected components (main body,
eye, back line) with a total of five holes (four for the main body,
one for the eye), yielding the five cuts highlighted in orange in the
inset. There are no singularities in its frame field, no extra cuts
are therefore required. We also estimate the number of snapping
integers. Thanks to our integer elimination strategy, we only need
to add a single integer variable per connected region of triangles
assigned to the same tangent direction and not separated by a cut.
Tangent labels are represented by red/blue dots in the inset; black
dots are unlabeled triangles. The FISH has 26 red regions and 28 blue
regions, yielding a total of 54 snapping integers. Note that without
our integer elimination strategy, we would need to introduce one
snapping integer for each labeled triangle (i.e. each red/blue dot).

6.3. Curve Network Extraction

After computing the parametrization, we determine which integer
isolines are covered by the sketch, extract the resulting topological
graph, and convert it to parametric curves (Fig. 3c,d).

Topological graph. Because our parametrization is actually com-
posed of multiple, per-triangle grids, we first need to connect the
isoline segments of neighboring triangles to extract complete curves.
We perform this extraction by inverse-mapping the grid to the sketch
space with the algorithm of Ebke et al. [EBCK13]. Since our goal
is to obtain a topological graph of the input sketch, we only trace
edges that belong to isolines in the tangent direction, and discard all
edges in the transversal direction.

Curve fitting. The last step of our method consists in fitting Bézier
curves to the edges of the topological graph. A strength of our
approach is that the parametrization tells us whether successive
edges of the graph correspond to the same isoline. We exploit this
information by chaining edges corresponding to the same isoline and
by fitting a single spline curve to each chain. Denoting by {vi}n

i=0
the vertices of a chain and by ti their associated normalized arc-
length parameters such that t0 = 0, tn = 1, ti < ti+1, we compute
a piecewise-cubic spline γ(t) that minimizes the fitting error and
satisfies the endpoint interpolation:

min
γ

n

∑
i=0
‖γ(ti)−vi‖2 s.t. γ(0) = v0 and γ(1) = vn.

Our goal is to obtain a compact result with a small number of spline
segments without sacrificing precision. We start by fitting a single
segment, and we check if the fitting error is smaller than a threshold
(fixed to βω̄ in our implementation), in which case we stop the
fitting. Otherwise, we recompute the spline, increasing the number
of segments by 1. We stop the iteration as soon as the fitting error
falls below the threshold or the number of segments reaches the
number of edges in the chain. Before the fitting, we split all chains
at vertices of degree > 2, and we discard chains that weakly cover
stroke pixels. To measure the coverage, we assign each stroke pixel
to the nearest chain, and we make a 4-bin histogram of chain pixels
using their associated isoline parameters normalized to [0,1]. The
chain is discarded if any of the bins is empty.

7. Results and experiments

We implemented our method in C++ using EIGEN [GJ*10] for lin-
ear algebra, TRIANGLE [She96] for meshing, CGAL [CGA20] and
LIBIGL [JP*20] for geometry processing, COMISO [BZK12] for
solving the mixed-integer optimization, and ALGLIB [Boc20] for
spline fitting. The source code of our implementation and the supple-
mental materials are available at https://repo-sam.inria.
fr/d3/grid-vectorization/.

Fig. 13 shows a variety of drawings vectorized with our method.
While the CITYSCAPE includes grid-like structures particularly well
suited to our approach, other drawings show that our method also
succeeds on curved shapes, sharp angles and Y-junctions. Our cur-
rent implementation takes less than a minute for simple inputs, up
to several minutes for the most complex ones like the CITYSCAPE

(see Table 2), which is on par with prior vectorization methods, cf.
Table 1.

submitted to Eurographics Symposium on Geometry Processing (2020)

https://repo-sam.inria.fr/d3/grid-vectorization/
https://repo-sam.inria.fr/d3/grid-vectorization/


8 Stanko et al. / Integer-Grid Sketch Simplification and Vectorization

rough input with a mask output curvesparametrization

clean input output curvesparametrization

Figure 8: Using a sparse mask on the heavily over-sketched RUN-
NING KID (top), our vectorization is close to the one obtained using
a clean version of the same input (bottom). (Purple scribbles: less
simplification, orange scribbles: more simplification.)

Simplification control. Our method provides direct control over
the level of detail that the user wishes to reconstruct. Fig. 7 shows the
effect of varying the narrow band size β and the scale multiplier λ on
a toy example. Intuitively, smaller values of β and λ provide weaker
simplification, and are suitable when the user wants to reconstruct
all of the strokes (for instance in clean drawings). Higher values of
β and λ yield stronger simplification, and are suitable for merging
over-sketched strokes. In our experiments, we typically first find a
suitable value of the binarization threshold. By default, we use the
threshold 165, which we increase (typically to 220) when processing
drawings with weaker contrast. We then fix the size of the narrow
band such that it covers neighboring regions where we want to
merge strokes. Finally, we adjust the scale multiplier λ according to
the desired level of detail.

Fig. 8 demonstrates the robustness of our method to the sketchi-
ness in the input: we obtain similar results for both clean and rough
version of the RUNNING KID.

Comparisons. Fig. 9 shows that our algorithm performs similarly
to previous methods on clean drawings, while Fig. 12 shows that it
outperforms prior work on over-sketched inputs. In the latter case,
we compare to two recent bitmap vectorization algorithms [FLB16;
BS19], as well as to a sketch simplification algorithm that takes
vector strokes as input [LRS18], which we rasterized to be fed to the
bitmap-based methods. We also show the results obtained with the
method by Bessmeltsev and Solomon [BS19] on a bitmap filtered
using Simo-Serra et al. [SII18b] and Xu et al. [XXM*19]. The
results shown for Liu et al. [LRS18] come from their paper. We
ran the method by Bessmeltsev and Solomon [BS19] with default
parameters and the methods by Favreau et al. [FLB16], Simo-Serra
et al. [SII18b], and Xu et al. [XXM*19] with a set of parameters
that we adjusted to perform best overall.

input sketch [NHS*13] our result

input sketch [BS19] our result

Figure 9: Our method is competitive with prior work on clean
drawings.

Given a raster drawing, our method produces vector drawings
close to the results obtained by Liu et al. [LRS18] from a vector
input. In contrast, the results by Favreau et al. [FLB16] contain
residual open curves that their optimization does not attempt to
merge with nearby parallel curves. The method by Bessmeltsev and
Solomon [BS19] targets clean drawings, and as such keeps most
of the original strokes. Please see the supplemental materials for
additional comparisons.

While the bitmap filtering algorithms by Simo-Serra et al.
[SII18b] and Xu et al. [XXM*19] succeed in merging most of
the over-sketched strokes in Fig. 12, they might create topological
artifacts that the method by Bessmeltsev and Solomon [BS19] can-
not correct (see for instance the close-ups on the SMALL CAR in the
third row). Moreover, since Simo-Serra et al. [SII18b] and Xu et al.
[XXM*19] use a single global scale to specify the level of simpli-
fication, they might fail to properly reconstruct all of the curves in
the presence of varying levels of sketchiness, even when the scale
is adjusted to obtain the best possible result. Fig. 10 demonstrates
three examples of such failure cases. Our method correctly merges
the over-sketched strokes and reconstructs the clean strokes, without
needing a mask on these three inputs.

User control. Over-sketched drawings often contain varying lev-
els of details, for which a global scale multiplier λ might not be
adequate. For such drawings, we allow the user to provide a mask in-
dicating different scales for the grid parametrization. Fig. 11 shows
examples generated with such masks; all other figures were gener-
ated without masks except Fig. 1 and Fig. 8 (top). Purple scribbles
indicate small details, which we capture by reducing the grid scale
and the narrow band size to one half of the global values. Orange
scribbles indicate regions where stronger simplification is desired,
which we achieve by doubling the scale of the grid and the size of
the narrow band.

submitted to Eurographics Symposium on Geometry Processing (2020)



Stanko et al. / Integer-Grid Sketch Simplification and Vectorization 9

input sketch [SII18b]
(bitmap output)

[XXM*19]
(bitmap output)

our result
(vector output)

Figure 10: Our method can handle sketches containing both clean
and over-sketched strokes. In contrast, existing learning-based fil-
tering methods often fail to recover the correct topology for such
sketches, resulting in artifacts in the output bitmaps. Note that we
have adjusted the parameters of both filtering methods [SII18b;
XXM*19] to obtain the best results. Please see the supplemental
materials for additional comparisons.

Limitations and future work. A strength of our approach is its
ability to merge parallel strokes by increasing the scale of the grid
parametrization. However, small open curves are sometimes missed
when their length falls bellow the distance between grid nodes.
The grid might also struggle to explain sharp turns or fine details,
especially in low-resolution drawings (Fig. 17).

Our method relies on a narrow band of triangles to localize the
grid parametrization. Setting this band too large may make remote
parts of the drawing interact together, preventing the parametrization
to closely follow the lines, as illustrated in Fig. 15. Since the size of
the narrow band is specified by the global parameter β, for certain
inputs, it might be difficult to find a value of β that works well in all
parts of the drawing (Fig. 14).

The integer elimination strategy can be seen as a way to narrow
down the search space during mixed-integer optimization, allowing
us to significantly speed up the computation. Although this heuris-
tic might induce a loss of precision, we did not experience such
problems in practice.

While our method is comparable to prior work in terms of running
time (cf. Table 1), complex sketches can take several minutes to
process (cf. Table 2). Some performance could be gained via code
optimization – our implementation is a research prototype, and we
believe there is room for improvement. Moreover, our experiments
suggest that, at least for some inputs, results of comparable quality
might be obtained at faster rates using a coarser triangulation; see
the supplemental materials for an example. Nevertheless, more ex-
periments are required to determine a strategy for optimizing mesh
density to gain performance. This could even mean a different mesh
generation algorithm, e.g. by meshing the narrow band represented
as a signed distance function.

Our current global approach requires recomputing the parame-

input sketch and mask result without mask result with mask

Figure 11: Our method supports local control over the scale at
which strokes get merged. (Purple scribbles: less simplification,
orange scribbles: more simplification.)

trization for the entire mesh when the user updates the mask, even
when the changes are localized to small regions in the drawing. One
could instead freeze the already-computed parametric coordinates
in triangles outside of regions affected by the mask. This procedure
would remove most degrees of freedom in the mixed-integer prob-
lem, potentially enabling more interactive workflows. We leave such
extensions for future work.

Even though our frame field regularization strategy improves the
resolution of sharp Y-junctions compared to [BS19] (see Fig. 5),
it can still fail around very sharp ones, leading to locally incorrect
field topology. In such cases, the tangent direction is the same for
all three branches of the junction, similarly to Fig. 5a. Since our
parametrization cannot bifurcate an isoline, such field configurations
lead to local parametric inversions; in practice, the resulting isolines
“loop back” on themselves until they reach a mesh boundary (see
the black close-ups in Fig. 14). In future, we plan to locally detect
such configurations in order to dynamically modify the topology of
the frame field.

Finally, high-valence junctions might be difficult to capture us-
ing our vertex-based frame field (Fig. 16). This issue could be
addressed using a face-based discretization, or a directional field
with more than four directions, as already suggested by Bessmeltsev
and Solomon [BS19], and/or a different type of parametrization, e.g.
with triangular or hexagonal cells [NPPZ12]. Another option might
be to allow manual positioning of singularities on such junctions, or

submitted to Eurographics Symposium on Geometry Processing (2020)



10 Stanko et al. / Integer-Grid Sketch Simplification and Vectorization

even automatic detection of such configurations. Since high-valence
junctions are much less frequent than junctions between 3 or 4 lines,
we leave such experiments for future work.

8. Conclusion

Grid-based parametrization is a popular tool in geometry processing
as it allows the conversion of triangle meshes into clean, feature-
aligned quad meshes. In this paper, we drew a parallel between this
task and line drawing vectorization, where a long standing challenge
has been to locate curves and junctions in the presence of multiple
overlapping strokes. Adapting the modern geometry-processing
toolbox to this new domain yields a novel algorithm that succeeds
on both clean and over-sketched drawings and offers an intuitive
control over the scale under which strokes are merged. We hope
that our work will inspire the adaptation of other mesh processing
algorithms to the domain of line drawings.

Acknowledgments

We thank the anonymous reviewers for their invaluable feedback,
Justin Solomon for discussions in early stages of the project,
Xuemiao Xu for providing comparisons to [XXM*19], and Yulia
Gryaditskaya for providing the BIRD and the FLOWER drawings in
Fig. 13. We also thank George Drettakis, Yulia Gryaditskaya, Felix
Hähnlein, David Jourdan, Baptiste Nicolet and Simon Rodriguez for
their feedback on preliminary drafts of the paper. This work was sup-
ported by the European Research Council (ERC) starting grants D3
(ERC-2016-STG 714221) and AlgoHex (ERC-2019-STG 853343),
the Natural Sciences and Engineering Research Council of Canada
(NSERC) grant RGPIN-2019-05097 (“Creating Virtual Shapes via
Intuitive Input”), the Fonds de recherche du Québec – Nature et
technologies (FRQNT) grant 2020-NC-270087, and research and
software donations from Adobe.

References
[BCF*07] BARTOLO, A., CAMILLERI, K., FABRI, S., BORG, J., and FAR-

RUGIA, P. “Scribbles to Vectors: Preparation of Scribble Drawings for
CAD Interpretation”. Proc. Sketch-based Interfaces and Modeling (SBIM).
2007, 123–130. ISBN: 978-1-59593-915-9 3.

[BF12] BAO, B. and FU, H. “Vectorizing line drawings with near-constant
line width”. IEEE International Conference on Image Processing.
2012, 805–808 2.

[BLP*13] BOMMES, D., LÉVY, B., PIETRONI, N., PUPPO, E., SILVA, C.,
TARINI, M., and ZORIN, D. “Quad-Mesh Generation and Processing: A
Survey”. Computer Graphics Forum 32.6 (2013), 51–76 4.

[Boc20] BOCHKANOV, S. ALGLIB. 2020. URL: https : / / www .
alglib.net/ 7.

[BS19] BESSMELTSEV, M. and SOLOMON, J. “Vectorization of Line Draw-
ings via Polyvector Fields”. ACM Transactions on Graphics 38.1 (Jan.
2019), 9:1–9:12 3, 5, 8–11.

[BTS05] BARLA, P., THOLLOT, J., and SILLION, F. “Geometric Clustering
for Line Drawing Simplification”. Proc. Eurographics Symposium on
Rendering (EGSR). 2005, 183–192 3.

[BZK09] BOMMES, D., ZIMMER, H., and KOBBELT, L. “Mixed-integer
Quadrangulation”. ACM Transactions on Graphics (Proc. SIGGRAPH)
28.3 (July 2009), 77:1–77:10 4, 6.

total time (sec.)
input Fig. [NHS*13] [FLB16] [BS19] ours
WINDMILL 1 47 72 104 228
SMALLCAR2 5 14 120 71 30
DRACOLION 9 11 80 25 108
ROCKET 10 54 787 192 53
MUSCLEMAN 12 23 119 188 26
CHURCH 13 11 70 59 523

Table 1: In terms of total running time per input, we are competitive
with prior vectorization methods. While our algorithm takes longer
on complex drawings, it often outperforms existing methods on
simpler sketches. See Table 2 for additional statistics for each input.
(Note that the timings differ slightly from the ones in Table 2 since
they were measured on different machines.)

input Fig. resolution settings timings (sec.)
w h β λ field uv all

WINDMILL 1 700 850 0.3 1 23 208 241
FISH 3 1000 559 0.3 2 7 8 18
CROSS 4 500 500 1.0 5 4 3 9
SMALLCAR2 5 1000 600 0.3 2 14 19 38
KID (ROUGH) 8 1000 1140 0.3 2.5 32 54 93
KID (CLEAN) 8 584 640 0.3 1 11 25 41
MUTEN 9 1024 1024 0.3 1 22 33 66
DRACOLION 9 1024 1024 0.3 1 34 113 165
ROCKET 10 1800 1300 1.0 4 32 35 75
TRUCK 10 1000 686 0.8 3 63 38 108
HOUSE 10 1300 1578 1.2 5 45 53 105
CAR 11 1000 431 0.5 2 19 24 46
EAGLE1 11 1000 514 1.0 4 53 51 108
DUCK 11 1000 1092 0.3 1.5 15 16 36
TOOL 11 1000 1204 1.2 12 14 17 35
MECHA 12 1020 1000 0.8 3 44 52 103
MUSCLEMAN 12 1000 1127 0.3 2 12 21 37
SMALLCAR1 12 1000 560 0.8 3 23 22 48
BUILDING 12 1000 780 0.5 2 36 90 134
BIRD 13 1000 1250 0.3 2 19 85 113
BOWTIE 13 1000 567 1.2 3 85 24 113
CHURCH 13 1000 1000 0.5 2 45 470 533
CITYSCAPE 13 2000 1200 0 1 49 680 760
FLOWER 13 1800 1600 0.5 3 95 322 436
MOUSE 13 1024 1024 0.3 1 14 28 49
WOMAN 13 1000 1373 0.8 3 45 282 343
WALL 13 1300 1000 0.5 2 28 118 157
EAGLE2 15 500 315 0.3 2 5 7 14
JUNCTIONS (ALL) 16 250 250 0.5 2 1 1 3
CHARACTER 17 336 855 0.5 1 73 415 507
FAIRY 17 1000 955 0.3 1 37 31 73

Table 2: Quantitative statistics for sketches shown in the paper.
The last column shows the time it took to run the entire method,
including pre-processing and extraction.

[BZK12] BOMMES, D., ZIMMER, H., and KOBBELT, L. “Practical Mixed-
Integer Optimization for Geometry Processing”. Curves and Surfaces.
2012, 193–206. ISBN: 978-3-642-27413-8 7.

[CDQM18] CHEN, J., DU, M., QIN, X., and MIAO, Y. “An improved
topology extraction approach for vectorization of sketchy line drawings”.
The Visual Computer 34.12 (Dec. 2018), 1633–1644 2.

[CGA20] CGAL PROJECT. CGAL User and Reference Manual. 2020. URL:
https://doc.cgal.org/ 7.

submitted to Eurographics Symposium on Geometry Processing (2020)

https://www.alglib.net/
https://www.alglib.net/
https://doc.cgal.org/


Stanko et al. / Integer-Grid Sketch Simplification and Vectorization 11

input sketch [LRS18] [FLB16] [BS19] [SII18b] + [BS19] [XXM*19] + [BS19] our result
(vector input)

input sketch [LRS18] [FLB16] [BS19] [SII18b] + [BS19] [XXM*19] + [BS19] our result
(vector input)

input sketch [LRS18] [FLB16] [BS19] [SII18b] + [BS19] [XXM*19] + [BS19] our result
(vector input)

input sketch [LRS18] [FLB16] [BS19] [SII18b] + [BS19] [XXM*19] + [BS19] our result
(vector input)input sketch [LRS18] [FLB16] [BS19] [SII18b] + [BS19] [XXM*19] + [BS19] our result

(vector input)
input sketch [LRS18] [FLB16] [BS19] [SII18b] + [BS19] [XXM*19] + [BS19] our result

(vector input)

input sketch [LRS18] [FLB16] [BS19] [SII18b] + [BS19] [XXM*19] + [BS19] our result
(vector input)input sketch [LRS18] [FLB16] [BS19] [SII18b] + [BS19] [XXM*19] + [BS19] our result

(vector input)
input sketch [LRS18] [FLB16] [BS19] [SII18b] + [BS19] [XXM*19] + [BS19] our result

(vector input)

input sketch [LRS18] [FLB16] [BS19] [SII18b] + [BS19] [XXM*19] + [BS19] our result
(vector input)input sketch [LRS18] [FLB16] [BS19] [SII18b] + [BS19] [XXM*19] + [BS19] our result

(vector input)
input sketch [LRS18] [FLB16] [BS19] [SII18b] + [BS19] [XXM*19] + [BS19] our result

(vector input)

input sketch [LRS18] [FLB16] [BS19] [SII18b] + [BS19] [XXM*19] + [BS19] our result
(vector input)input sketch [LRS18] [FLB16] [BS19] [SII18b] + [BS19] [XXM*19] + [BS19] our result

(vector input)
input sketch [LRS18] [FLB16] [BS19] [SII18b] + [BS19] [XXM*19] + [BS19] our result

(vector input)

input sketch [LRS18] [FLB16] [BS19] [SII18b] + [BS19] [XXM*19] + [BS19] our result
(vector input)input sketch [LRS18] [FLB16] [BS19] [SII18b] + [BS19] [XXM*19] + [BS19] our result

(vector input)
input sketch [LRS18] [FLB16] [BS19] [SII18b] + [BS19] [XXM*19] + [BS19] our result

(vector input)

input sketch [LRS18] [FLB16] [BS19] [SII18b] + [BS19] [XXM*19] + [BS19] our result
(vector input)input sketch [LRS18] [FLB16] [BS19] [SII18b] + [BS19] [XXM*19] + [BS19] our result

(vector input)
input sketch [LRS18] [FLB16] [BS19] [SII18b] + [BS19] [XXM*19] + [BS19] our result

(vector input)

input sketch [LRS18] [FLB16] [BS19] [SII18b] + [BS19] [XXM*19] + [BS19] our result
(vector input)

Figure 12: Results on over-sketched drawings. Our method is on par with the one by Liu et al. [LRS18], which takes vector strokes as input.
Other vectorization methods [FLB16; BS19] fail to merge neighboring parallel strokes. Although bitmap filtering methods [SII18b; XXM*19]
can be used to pre-process a rough input before feeding it to a vectorization algorithm, they often create artifacts. For the methods by Favreau
et al. [FLB16], Simo-Serra et al. [SII18b], and Xu et al. [XXM*19] we have adjusted the parameters to obtain the best results, and we ran the
method by Bessmeltsev and Solomon [BS19] with the default settings. Please see Fig. 9 for additional comparisons to vectorization methods,
Fig. 10 for additional comparisons to bitmap filtering methods, and the supplemental materials for complete results.

[CGBG13] CHEN, J., GUENNEBAUD, G., BARLA, P., and GRANIER, X.
“Non-Oriented MLS Gradient Fields”. Computer Graphics Forum 32.8
(2013), 98–109 3.

[DCP17] DONATI, L., CESANO, S., and PRATI, A. “An Accurate System
for Fashion Hand-Drawn Sketches Vectorization”. IEEE International
Conference on Computer Vision (ICCV). Oct. 2017, 2280–2286 2.

[DVPS14] DIAMANTI, O., VAXMAN, A., PANOZZO, D., and SORKINE-
HORNUNG, O. “Designing N-PolyVector Fields with Complex Polyno-
mials”. Computer Graphics Forum (Proc. SGP) 33.5 (Aug. 2014), 1–
11 5.

[EBCK13] EBKE, H.-C., BOMMES, D., CAMPEN, M., and KOBBELT, L.
“QEx: Robust Quad Mesh Extraction”. ACM Transactions on Graphics
(Proc. SIGGRAPH Asia) 32.6 (Nov. 2013), 168:1–168:10 4, 7.

[FLB16] FAVREAU, J.-D., LAFARGE, F., and BOUSSEAU, A. “Fidelity vs.
Simplicity: A Global Approach to Line Drawing Vectorization”. ACM
Transactions on Graphics (Proc. SIGGRAPH) 35.4 (July 2016), 120:1–
120:10 2, 8, 10, 11.

[GJ*10] GUENNEBAUD, G., JACOB, B., et al. Eigen v3. 2010. URL: http:
//eigen.tuxfamily.org 7.

[GZH*19] GUO, Y., ZHANG, Z., HAN, C., HU, W., LI, C., and WONG,
T.-T. “Deep Line Drawing Vectorization via Line Subdivision and Topol-
ogy Reconstruction”. Computer Graphics Forum (Proc. Pacific Graphics)
38.7 (2019), 81–90 3.

[HT06] HILAIRE, X. and TOMBRE, K. “Robust and accurate vectorization
of line drawings”. IEEE Transactions on Pattern Analysis and Machine
Intelligence 28.6 (2006), 890–904 2.

submitted to Eurographics Symposium on Geometry Processing (2020)

http://eigen.tuxfamily.org
http://eigen.tuxfamily.org


12 Stanko et al. / Integer-Grid Sketch Simplification and Vectorization

Figure 13: Gallery of additional results, showing that our method can handle a variety of configurations including over-sketching and varying
stroke width.

[IBB15] IARUSSI, E., BOMMES, D., and BOUSSEAU, A. “BendFields: Reg-
ularized Curvature Fields from Rough Concept Sketches”. ACM Transac-
tions on Graphics 34.3 (May 2015), 24:1–24:16 3.

[JHWS17] JUN, X., HOLGER, W., WILMOT, L., and STEPHEN, S. “Inter-
active Vectorization”. ACM SIGCHI. 2017, 6695–6705 3.

[JP*20] JACOBSON, A., PANOZZO, D., et al. libigl: A simple C++ geometry
processing library. 2020. URL: https://libigl.github.io 7.

[KLC07] KANG, H., LEE, S., and CHUI, C. K. “Coherent line draw-
ing”. ACM Symp. Non-Photorealistic Animation and Rendering (NPAR).
2007, 43–50 3.

[KWÖG18] KIM, B., WANG, O., ÖZTIRELI, A. C., and GROSS, M.
“Semantic Segmentation for Line Drawing Vectorization Using Neu-
ral Networks”. Computer Graphics Forum (Proc. Eurographics) 37.2
(2018), 329–338 2.

[LLBG19] LIU, Y., LI, X., BO, P., and GAO, X. “Sketch simplification
guided by complex agglomeration”. Science China Information Sciences
62.5 (Apr. 2019) 3.

[LPL*17] LI, C., PAN, H., LIU, Y., SHEFFER, A., and WANG, W. “BendS-
ketch: Modeling Freeform Surfaces Through 2D Sketching”. ACM
Transactions on Graphics (Proc. SIGGRAPH) 36.4 (July 2017), 125:1–
125:14 3.

[LRS18] LIU, C., ROSALES, E., and SHEFFER, A. “StrokeAggregator:
Consolidating Raw Sketches into Artist-intended Curve Drawings”. ACM
Transactions on Graphics (Proc. SIGGRAPH) 37.4 (July 2018), 97:1–
97:15 3, 8, 11.

[LVRL06] LI, W.-C., VALLET, B., RAY, N., and LÉVY, B. “Representing
Higher-Order Singularities in Vector Fields on Piecewise Linear Surfaces”.
IEEE Transactions on Visualization and Computer Graphics 12.5 (Sept.
2006), 1315–1322 4.

[LWH15] LIU, X., WONG, T.-T., and HENG, P.-A. “Closure-aware Sketch
Simplification”. ACM Transactions on Graphics (Proc. SIGGRAPH Asia)
34.6 (Nov. 2015), 168:1–168:10 3.

[NHS*13] NORIS, G., HORNUNG, A., SUMNER, R., SIMMONS, M., and
GROSS, M. “Topology-driven Vectorization of Clean Line Drawings”.
ACM Transactions on Graphics 32.1 (Feb. 2013), 4:1–4:11 2, 8, 10.

[NPPZ12] NIESER, M., PALACIOS, J., POLTHIER, K., and ZHANG, E.
“Hexagonal Global Parameterization of Arbitrary Surfaces”. IEEE Trans-
actions on Visualization and Computer Graphics 18.6 (2012), 865–878 9.

[NS19] NAJGEBAUER, P. and SCHERER, R. “Inertia-based Fast Vector-
ization of Line Drawings”. Computer Graphics Forum (Proc. Pacific
Graphics) 38.7 (2019), 203–213 2.

[OK11] ORBAY, G. and KARA, L. B. “Beautification of Design Sketches
Using Trainable Stroke Clustering and Curve Fitting”. IEEE Transactions
on Visualization and Computer Graphics 17.5 (May 2011), 694–708 3.

[PPM18] PARAKKAT, A. D., PUNDARIKAKSHA, U. B., and
MUTHUGANAPATHY, R. “A Delaunay triangulation based ap-
proach for cleaning rough sketches”. Computers & Graphics (Proc. SMI)
74 (2018), 171–181 2.

[She96] SHEWCHUK, J. R. “Triangle: Engineering a 2D quality mesh gen-
erator and Delaunay triangulator”. Applied Computational Geometry:

submitted to Eurographics Symposium on Geometry Processing (2020)

https://libigl.github.io


Stanko et al. / Integer-Grid Sketch Simplification and Vectorization 13

parametrization extracted graph parametrization extracted graph

a) smaller band: β = 0.5, λ = 2 b) wider band: β = 0.8, λ = 3

Figure 14: Our algorithm can introduce artifacts if the narrow
band is too small (purple and pink close-ups, smaller band) or too
large (orange close-ups, wider band). Moreover, sharp Y junctions
are often misrepresented by our frame field, in which case the para-
metrization cannot capture the correct topology (black close-ups).

input
sketch

result with β = 0.3 result with β = 10

Figure 15: The narrow band is crucial to restrict the grid parame-
trization to a local neighborhood. When the band is too large, the
grid struggles to explain remote parts of the drawing, resulting in
distortions.

input sketches

output curves

close-up to curves and parametrization

a) b) c) d)

Figure 16: While our method works best with junctions of degree 3
and 4 (a, b), other types of junctions (c) can be captured via frame
field singularities, shown as orange dots. Since our vertex-based
frame field only supports singularities of index ± 1

4 , higher-order
junctions might be difficult to capture (d).

Figure 17: Limitations of our method. For the low-resolution CHAR-
ACTER on the left, our method struggles to vectorize fine details.
The FAIRY on the right contains junctions with sharp turns that
are not captured in the parametrization, resulting in gaps in the
vectorization.

Towards Geometric Engineering. 1996, 203–222. ISBN: 978-3-540-70680-
9 5, 7.

[SII18a] SIMO-SERRA, E., IIZUKA, S., and ISHIKAWA, H. “Mastering
Sketching: Adversarial Augmentation for Structured Prediction”. ACM
Transactions on Graphics 37.1 (Jan. 2018), 11:1–11:13 3.

[SII18b] SIMO-SERRA, E., IIZUKA, S., and ISHIKAWA, H. “Real-Time
Data-Driven Interactive Rough Sketch Inking”. ACM Transactions on
Graphics (Proc. SIGGRAPH) 37.4 (July 2018), 98:1–98:14 3, 8, 9, 11.

[SISI16] SIMO-SERRA, E., IIZUKA, S., SASAKI, K., and ISHIKAWA, H.
“Learning to Simplify: Fully Convolutional Networks for Rough Sketch
Cleanup”. ACM Transactions on Graphics (Proc. SIGGRAPH) 35.4 (July
2016), 121:1–121:11 3.

[VCD*16] VAXMAN, A., CAMPEN, M., DIAMANTI, O., PANOZZO, D.,
BOMMES, D., HILDEBRANDT, K., and BEN-CHEN, M. “Directional
Field Synthesis, Design, and Processing”. Computer Graphics Forum
(Proc. Eurographics) 35.2 (2016), 545–572 3, 4.

[WZG*19] WEI, G., ZHOU, Y., GAO, X., MA, Q., XIN, S., and HE,
Y. “Field-aligned Quadrangulation for Image Vectorization”. Computer
Graphics Forum (Proc. Pacific Graphics) 38.7 (2019), 171–180 3.

[XXM*19] XU, X., XIE, M., MIAO, P., QU, W., XIAO, W., ZHANG, H.,
LIU, X., and WONG, T.-T. “Perceptual-aware Sketch Simplification
Based on Integrated VGG Layers”. IEEE Transactions on Visualization
and Computer Graphics (2019) 3, 8–11.

submitted to Eurographics Symposium on Geometry Processing (2020)


