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Abstract

Physically based rendering is extensively used in the TV animation industry (like Dis-
ney [10] or Pixar [17]) and the video game industry. This rendering technique uses an
advanced light model to solve the rendering equation, leading to photo-realistic represent-
ations of our real world.

An improvement thereon is to include the dispersive nature of materials like glass in
the form of a spectral dependency in the ray tracing. This spectral dependency leads to
the splitting of one light bundle into its individual wavelengths, each tracing its own path.
However, this is computationally expensive and methods to improve performance become
important.

This work compares two methods of reducing a discretised visible spectrum to increase
the performance of spectral physically based rendering: the “hero” wavelength sampling
and the “random” wavelength sampling. For this purpose, a Monte-Carlo ray tracing
engine has been implemented in the Rust programming language. The convergence speed
of both sampling methods has been assessed using several metrics for the resulting im-
age quality (namely the Mean Squared Error, the Peak Signal to Noise Ratio, and the
Structural Similarity Index Measure).

This study finds that the hero sampling approach consistently outperforms random
wavelength sampling. In the scenes presented, the hero wavelength sampling can be meas-
ured to converge up to

• 2.04x faster according to the Mean Squared Error, and

• 1.13x faster according to the Peak Signal to Noise Ratio, and have

• 1.23x less variance,

which demonstrates the significant advantages of hero wavelength sampling as a spectral
sampling algorithm.



Chapter 1

Introduction

Physically based rendering (PBR) is an advanced application of photo-realistic light sim-
ulation to computer graphics. PBR treats light as rays intersecting and reflecting in the
scene, modelling the flow of light and therefore achieving high render realism. Spectral
PBR takes this a step further, deviating from RGB rendering by applying the dispersion
phenomenon to the visible light spectrum: considering the wavelength-dependant optical
refraction creates rainbow-like colour effects following the physics of optics and hence leads
to an even more realistic simulation. The latter builds the core motivation of this work.

In this thesis, a spectral PBR tracer (PBRT) has been implemented in Rust [1] follow-
ing the famous PBRT book1 [16]. This new software is called Rust-V. Some ideas were also
taken from Spectral Clara Lux Tracer (SCLT) [9] [20]. While this is not a full recreation,
changes have been made to incorporate full spectral dependency and, therefore, the ability
to simulate the dispersion effect, which cannot be found in the original PBRT. Rust has
been chosen over C++ as it provides fearless memory safety and concurrency. Rust-V uses
the unbiased backwards-ray-tracing method.

Since PBRT is already based on physically based ray tracing, I decided to enhance the
method to multi-wavelength tracing. Conceptually, I divided the visible spectrum into
equally distributed discrete sample points. This raises the question of the computational
effort required to trace such a large distribution of wavelengths individually. As a solution,
instead of tracing all wavelengths individually, I chose a smaller subspace of the visible
spectrum. This bundle is traced as one until a spectral-dependent scattering event occurs,
potentially continuing as individual traces.

This thesis takes two methods of choosing this subspace, namely random and Hero
sampling [23], and compares their convergence rate and the computational effort needed
for a final noise-free image.

1version 3, at the time of writing version 4 is in the works
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Chapter 2

Theory

To simulate a virtual scene, it is crucial to know the process of how vision works. Whether
it be light rays hitting the cones and rods in a human eye or on a pixel in a camera sensor,
both measure the light intensity coming from a certain incoming direction. This incoming
light may either be directly from a light source like the sun or a light bulb, or it may have
been reflected or refracted by objects along its way.

This is the basis of how ray tracing works and can be qualitatively expressed using the
following equation.

2.1 Rendering Equation

The rendering equation describes the incoming light in these two parts:

1. the emission from the point of interest, and

2. all reflections from that point towards the observer.

The latter can be effectively modelled with an integral over the hemisphere of the point
of all light rays coming towards it. This reflected light itself once again stems from either
an emission or another reflection.
The rendering equation is therefore a recursive function, tracing back all incoming light
rays to their source emitter:

Lo (x, ωo, λ) = Le (x, ωo, λ) +

∫
Ω
fr (x, ωi, ωo, λ)Li (x, ωi, λ) (n · ωi)︸ ︷︷ ︸

cos θi

dωi (2.1)

where

• Lo (x, ωo, λ) is the total radiance of λ from point x,

• x ∈ R3 is the point in space we are evaluating,

• ωo ∈ R3 is the direction of the outgoing light,

• λ is the wavelength of the light,

• Le (x, ωo, λ) is the spectral emission,

• Ω is the hemisphere described by the tuple (x, n),

• fr (x, ωi, ωo, λ) is the bidirectional reflectance distribution function (BRDF) to eval-
uate the transferred radiance of λ from ωi to ωo at point x,

• ωi ∈ R3 is the direction of the incoming light,

• Li (x, ωi, λ) is the incoming radiance of λ from direction ωi to point x,
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• n ∈ R3 is the surface normal of point x. We describe the dot product with cos θi,
the incidence angle, which weakens the outward irradiance.

Ω

x

nωo
ωi

θi

Figure 2.1: Illustrating the integral over all ωi in the hemisphere Ω. Note that only
reflection is illustrated. Transmission would enter the material instead, effectively taking
the opposite hemisphere.

2.2 Bidirectional Reflection Distribution Function

The BRDF evaluates how much light gets reflected in an outgoing direction from a given
incoming direction. On a given surface, the light gets reflected in a predictable manner,
leading to only one possible outgoing direction for each wavelength. However, real ma-
terials have very complex surfaces. Unlike a glass pane, a mirror, and water that appear
with perfectly smooth surfaces, a wooden plank, e.g., has a lot of unevenness and details
to it if one looks at the microscopic level of the surface.
The former causes a specular reflection where light perfectly reflects according to the law
of reflection (2.2), whereas the latter creates a diffuse reflection. An illustrative example is
seeing each surface as made up of many small planes, each having its own different normal
vector. The different normal vectors therefore lead to different outgoing directions of the
light ray.

(a) Surface as we see or feel it with normal
vectors of equivalent direction.

(b) Surface as seen at the microscopic level
(example) with normal vectors pointing in
various directions.

Modelling such surfaces in computer graphics is a complex endeavour with different
strategies, some of which I will explain below.

2.2.1 Diffuse Reflection

The reflection on rough and uneven surfaces is called diffuse reflection. Incoming light
bundles scatter into many different directions. Instead of using complex meshes to simulate
this behaviour on the microscale, we can effectively approximate this effect by randomly
choosing an outgoing direction. A visualisation is given in Figure 2.3a.

The Lambertian Reflection uses the hemisphere described by the surface normal to
generate a random reflection. While this is a good first approximation, it is not physically
accurate, as light appears equally bright from all viewing directions. The real world is
much more complex.
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A more sophisticated method is the Oren-Nayar [12] reflectance model. It more accur-
ately predicts reflections on rough surfaces and leads to more realistic looking materials.

2.2.2 Specular Reflection

The reflection on smooth surfaces like mirrors, glass, and water is called specular reflection.
Incoming light bundles at angle θi reflect perfectly along the surface normal with outgoing
angle θo. This is the law of reflection [11]:

θi = θo (2.2)

A visualisation thereof can be seen in Figure 2.3b.

(a) Diffuse reflection: rays scatter into all
directions due to roughness on a microscopic
level, as seen in Figure 2.2b.

θi θo

(b) Specular reflection: rays get reflected
perfectly.

Figure 2.3: Visualisation of the main BRDF for two different types of surfaces.

2.3 Bidirectional Transmission Distribution Function

A special case of the BRDF is the transmission of light into the material. This is called the
bidirectional transmission distribution function (BTDF). Sometimes BRDF means both
BRDF and BTDF. It is therefore important to understand the context.

2.3.1 Specular Transmission

If light gets transmitted into the material instead, it is called specular transmission or
refraction. Material properties like refractive indices play an important role as they define
in which direction the light is being transmitted [21]. Incoming light at angle θi relative to
the surface normal in a material with refractive index ηi is then transmitted into another
material with refractive index ηt at an angle θt relative to the inside surface normal. This
is the law of refraction[11]:

ηi sin θi = ηt sin θt

This refractive index depends on the wavelength of the light entering. Therefore, the
dispersion effect is observed in materials with rather “large” divergent refractive indices.
This is why during a sunny rain, a rainbow appears. All the different water droplets refract
and disperse the incoming sunlight into many more outgoing directions. As a result, the
law of refraction can be written to directly account for the wavelength dependency of λ:

ηi(λ) sin θi = ηt(λ) sin θt (2.3)

Real materials are often a combination of both specular reflection and transmission
(e.g., water or glass). This effect can be described with the Fresnel equations to compute
the Fresnel reflectance [16]. This specifies the fraction of incoming light that is either
reflected from the surface or transmitted into the material.

Rust-V only implements the Fresnel equations for dielectric materials (non-conducting
materials like air, glass, and water) as they have a particularly simple form:
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θi

θt

Figure 2.4: Specular transmission: rays refract into an optically more dense material
(ηi < ηt).

r‖ =
ηt cos θi − ηi cos θt
ηt cos θi + ηi cos θt

,

r⊥ =
ηi cos θi − ηt cos θt
ηi cos θi + ηt cos θt

,

Fr =
1

2

(
r2
‖ + r2

⊥

)
. (2.4)

Where r‖ and r⊥ describe the Fresnel reflectance for either parallel or perpendicular po-
larized light respectively. Fr then gives the Fresnel reflectance for unpolarised light. The
Fresnel transmittance is the energy conserving opposite of 1− Fr.

A simple RGB model is not enough to model the transmitting behaviour accurately.
Considering only 3 wavelengths can hardly simulate the dispersion effect correctly, as can
be seen in Figure 5.8d (spectral vs. RGB rendering comparison).

2.4 Integration

Integrators are a major component in ray tracing as they compute the final incoming
radiance by solving the rendering equation (2.1). They come in various forms and take
different “paths”. They can be described with the help of the following notation [2]:

• E is the eye,

• L is the light,

• D is diffuse reflection/transmission,

• G is glossy reflection/transmission, and

• S is specular reflection/refraction,

leading to following descriptions (with help of Regex):

• ray casting (by Arthur Appel): E(D|G)L,

• recursive ray tracing (by Turner Whitted): E[S∗](D|G)L,

• path tracing (James Kajiya): E[(D|G|S) + (D|G)]L,

• radiosity (Cindy M. Goral): ED ∗ L.

We can therefore immediately see which method traces which paths.

2.4.1 Path Tracer

To solve Equation (2.1) we can use the Monte-Carlo method to compute the integral over
the hemisphere using random path creation. The basic algorithm can be described as
follows [2]:
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Monte-Carlo Path Tracing Algorithm

1. Create a ray from the camera at pixel (x, y). We initialise throughput = 1 and
Lo = 0.

2. Trace the ray to the closest intersection in the scene.

(a) If we hit no object, we return Lo.

(b) If the object is an emitter, we return Lo + throughput · Le.
(c) Otherwise we:

i. Add direct illumination from emitters (if visible) Lo = Lo + throughput ·
Ldirect.

ii. Sample the surface BRDF and set throughput = throughput · fr · cos θi.

iii. Scatter the ray according to the surface BRDF and continue at Item 2.

One can see that this recursive algorithm terminates upon hitting either no object, or an
emitter. This might be computationally expensive or never terminate in a scene where we
have either

• no emitter present, or

• objects all around us with only a small emitter present.

This is why it is very beneficial to introduce a maximum depth for the recursion. Moreover,
since the throughput might decrease so much that any further recursion proves to have
too little impact, an early stop is unquestionably favourable.

To estimate the radiance of a pixel, we therefore have to shoot many rays from the
camera to get a good sample space for the first hemispherical integral. We can express
this estimation as follows: [23]:

I =
1

N

N∑
i=1

f(Xi)

p(Xi)
(2.5)

where

• I is the intensity of the pixel,

• N is the number of samples per paths for the pixel,

• Xi is a sample in the path space,

• f(Xi) is the path contribution described in Section 2.4.1, and

• p(Xi) is the probability density function (PDF) of the sample Xi.

More samples per pixel estimate the integral more precisely, reducing noise stemming
from the Monte-Carlo approach. An example is given in Figure 2.5.

2.4.2 Spectral Path Tracer

In a spectral path tracer, we take into account the potential wavelength-dependant BRDF
function as in transmissive materials, e.g. We can therefore reuse the Monte-Carlo path
tracing algorithm 2.4.1 and adapt it to shoot only rays with a specific wavelength.
This results in a multitude of different paths, even though there may not have been a
wavelength-dependant BRDF.

It is therefore better to actually trace the batch of wavelengths using the same path,
splitting them only on dispersive materials. The estimator can then be expressed similar
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to Equation (2.5), but with the additional wavelength dependency of λj at any given time
and C chosen wavelengths [23]:

I =
1

N

1

C

N∑
i=1

C∑
j=1

f(Xi, λ
j
i )

p(Xi, λ
j
i )

(2.6)

Tracing all possible wavelengths has a significant impact on performance on branching
light paths, so we can again use random sampling to get a good approximation of the
whole spectrum Λ. Tracing a batch of only C different λi ∈ Λ still results in the correct
estimation. For choosing the different λi it makes a lot of sense to just sample them
uniformly from the interval [λstart, λend]. This is a simple and unbiased approach with just
one big flaw. While this leads to the correct sampling of all wavelengths involved, it also
creates a lot of colour noise as the samples are not spread out but randomly chosen. It is
very well possible that sampling a batch of wavelengths leads to very similar λi, missing
potentially important λj ∈ Λ. This is why the Hero Wavelength Spectral Sampling
method introduces the concept of the Hero Wavelength [23]. Instead of choosing all λi at
random, we will only choose the first - the hero wavelength λ1 = λh - at random, placing
the rest of the batch equidistantly around it. This hero wavelength will then also be used
for path propagation decisions. The article defines a rotation function around Λ like the
following:

ri : Λ→ Λ ri(λh) = λmin + (λh − λmin +
i

C
λ̄) mod λ̄ (2.7)

with i ∈ 1, ..., C, λ̄ = λmax − λmin.
This method is still randomly sampling the Λ space, but due to virtually covering the

whole Λ in one batch, it results in less noise and more coherent convergence.
As the hero paper points out, the PDF to sample Xi and λji is

p(Xi, λ
j
i ) =

1

C

C∑
k=1

p(λki )p(Xi|λki ) (2.8)

If no spectral dependency was observed in the path generation, this would simply reduce
to

p(Xi, λ
j
i ) = p(λji ) ∗ p(Xi|λji ) (2.9)

=
C

|Λ|
∗ p(Xi|λh)

as the probabilities of sampling each λji are equal, and only the hero wavelength is used
for path creation (may even be omitted).

During a spectral scattering event, however, the light path would split up and the
probability to choose the spatial sample Xi with a λki reduces to

p(Xi|λki ) =

{
1, if λki generates this path

0, otherwise
(2.10)

Although (2.8) describes the correct PDF, it also means that one would essentially discard
all other scattered paths, as only the hero wavelength is used for path propagation.

If the path creation is chosen with a maximum depth of d and the scattering event
happens at a depth d̂ < d, the path computation for the other wavelengths is discarded
instead of following the new path branches. This strikes me as a poor decision, as the
path contribution of other wavelengths λ ∈ {λh, ...λC} \ λh should not just be discarded.
Rust-V ’s approach is to reuse the generated path by the light bundle until dispersion
happens, after which the different path branches are traced separately, combining their
contributions.
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Figure 2.5: A comparison of both path (top row) and spectral path (bottom row) tracing
with 4, 64 and 1024 samples per pixel (left to right). The effect of reduced brightness in
spectral sampling becomes significantly visible in low samples renderings.

By the very nature of spectral sampling, tracing only a randomised subspace of Λ can
result in accidentally ignored wavelengths. This reduces the overall brightness of the scene
if either:

1. the random generator keeps giving unfavourable samples, or

2. not enough samples have been rendered.

With enough samples provided, the first problem has a low chance of happening. There-
fore, this unwanted effect is especially visible in the second case. An example of this effect
is given in Figure 2.5. As a comparison, a noise-free rendering can be seen in Figure 5.1.

2.5 Colour

The physical model describes colour as a continuous spectrum of waves, whereas computer
graphics usually describe colours in RGB, CMY, HSV, XYZ or other formats. These tend
to have only 3 components to describe a colour, e.g. red, blue and green in the RGB colour
space. All these formats cannot describe the physical description in full, but get pretty
close to it and are enough for most graphical applications. This thesis won’t go into much
detail on colour theory because it is such an extensive topic.

To break down a spectrum to common RGB, some operations are needed according to
CIE 1931[7]. The main steps include:

1. convert to CIE XYZ colour space using colour matching functions which describe
the observer’s (human eye, e.g.) sensitivity towards the tristimulus values XYZ. An
example of these functions is given in fig. 2.7.

2. convert XYZ to RGB with a reference white (e.g., D50 or D65)
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One benefit of rendering in spectral colours is the ability to demonstrate metamerism.
Metamerism is the perception of different spectra having equal colour to the observer due
to different illuminants. The human eye, e.g., has three types of cone cells which reduce a
perceived light spectrum into the tristimulus values of red, green, and blue. These cones
have overlapping sensitivities, as shown in Figure 2.6.

Figure 2.6: The spectral sensitivity of the eye [3]. Each cone covers a large spectrum with
different sensitivity.

Figure 2.7: The CIE 1931 XYZ colour matching functions[4]. These are required to convert
spectral colour data to XYZ format.
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Chapter 3

Implementation

While ray tracers are typically written in C++ [5], I opted for the rather new language
Rust. It is a systems programming language as well, but comes with a promise of automatic
memory management and safety (including concurrency). This is due to heavy analysis
during compilation, where the compiler enforces a set of rules programmers have to follow,
unless we want to go unsafe.

As a reference implementation in C++, I followed the PBRT book [16] and source
code [14][15]. I did, however, diverge from many things to incorporate Rust patterns and
idioms and drop most space transformations for simplicity.

3.1 Colour

Rust-V supports the colour types Srgb, Xyz and Spectrum. Important to note is that
these colour types are described as an array of either 3 or 36 floats in ascending order
of wavelength. This effectively requires both Srgb and Xyz data to be in inverted or-
der, as a low wavelength corresponds to a blue wavelength. To put it more clearly, the
typical (red, green, blue) gets interpreted as (blue, green, red) (a pitfall that lead to long
debugging hours). The conversion between those types follow

Srgb→ linear Srgb→ Xyz

Xyz→ linear Srgb→ Srgb

Spectrum→ Xyz.

Only the D65 white space is supported, and all colour transformations depend on this
assumption.

All colour data has been taking from BabelColor [8], which contains data for 24 different
colours like red, blue sky and foliage, to name a few. Their spectrum measurements range
from 380nm to 730nm in steps of 10nm, reaching the 36 distinct wavelengths for the
Spectrum type.

Rust-V allows defining the colour scheme at compile time, as dynamic interpretation
would lead to a loss in overall computation speed. As explained in Section 2.4.2, batch
tracing is implemented for spectral rendering, amounting to a compile-time constant of
const PACKET_SIZE: usize = 4 for auto-vectorization of the code. Both Srgb and Xyz

have only 3 values, so their packet size is automatically reduced to 4.

3.2 Geometry

Rust-V supports following geometries:
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• axis aligned bounding boxes (AABBs),

• spheres (no ellipsoids) and bubbles (made out of two spheres),

• planes and disks, and

• meshes.

However, it does not support texture mapping with (u, v) coordinates. The geometry
interface describes the basic functions:

trait Geometry {

// If we cannot do a containment test, we simply return [None].

fn contains(&self, p: Vec3) -> Option<bool>;

// Returns the bounding box.

fn bounds(&self) -> Aabb;

// Returns intersection information, if any.

fn intersect(&self, ray: Ray) -> Option<Intersection>;

// Returns whether an intersection occurs.

fn intersects(&self, ray: Ray) -> bool;

}

where the intersection information consists of

struct Intersection {

point: Vec3,

normal: Vec3,

incoming: Vec3,

t: Float,

}

This information is needed by the integrators (Section 3.6) for the BRDF (Section 3.4)
calculation.

3.3 Acceleration structure

To accelerate the ray tracing, particularly with meshes, a bounding volume hierarchy has
been implemented, following the surface area heuristic (SAH) [22]. It uses the indices of
geometries (be it triangles in a mesh or all objects in a scene, e.g.) to do quick intersection
tests.

3.4 Bidirectional Reflectance Distribution Functions

To calculate the BRDF function of the rendering equation (2.1) we need to have an
interface for different materials. While Rust-V is laid out for spectral ray tracing, it also
comes with a generic path tracer (Section 3.6), meaning the interface must support both
modes. Both BRDF (reflective) and BTDF (transmissive) functions have been united as
BxDF.

To make use of vectorization in compiled code, I introduce methods to calculate a
packet of multiple wavelengths at the same time with a default size of const PACKET_SIZE: usize = 4.

trait BxDF {

// Returns the type of the bxdf.
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fn flag(&self) -> BxDFFlag;

// Evaluates the BxDF.

fn evaluate(&self, incident: Vec3, outgoing: Vec3) -> Spectrum;

// Evaluates a packet of indices.

fn evaluate_packet(..., indices: &[usize; PACKET_SIZE]) -> [Float; PACKET_SIZE];

// Evaluates one wavelength only.

fn evaluate_lambda(..., index: usize) -> Float;

// Samples and evaluates the BxDF.

// E.g. samples a random incoming direction from the

// unit hemisphere for diffuse reflection.

fn sample(&self, out: Vec3, sample: Vec2) -> Option<BxDFSample>;

// Samples a packet.

// A transmissive material introduces multiple incoming

// directions here due to wavelength dependency.

fn sample_packet(...) -> ...;

// Samples one wavelength only.

fn sample_lambda(...) -> ...;

// Computes the PDF for the pair of directions.

fn pdf(&self, inc: Vec3, out: Vec3) -> Float;

}

All BxDF do calculations inside their local space for mathematical simplifications inside
the code. For this reason, Rust-V introduces the super-set called BSDF (bidirectional
scattering distribution function), which wraps around a list of BxDFs and provides the
necessary conversion between global and local space.

3.5 Objects

A scene object consists of both a geometry and a BSDF. These properties fully to describe
a red cube, e.g., or a mesh with glass-like material.

However, a special case are scene objects that emit light. To be qualified as an emitter,
the scene object must also have the capability of being sampled for direct illumination.
This sampling is what leads to soft shadows inside the scene, greatly enhancing the per-
ceived realism. The emitter interface is only implemented for the geometries Point, Disk
and Sphere, whereas the last two are the only physically plausible ones.

3.6 Integrator

The integrator interface is fairly simple and consists of only one method:

pub trait Integrator: Send + Sync {

/// Calculates the rendering equation and adds the result into the pixel.

/// The pixel is averaging all results without specific filters.

fn integrate(&self, scene: &Scene, primary_ray: Ray, pixel: &mut Pixel);

}

Rust-V comes with implementations for the Whitted model, path- and spectral path
tracing.
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3.7 Checkpointing

Rust-V comes with a checkpointing system that allows pausing the current rendering
computation and continuing at a later time. The trapped signals are:

• SIGUSR1: saves the current rendering as a PNG, appending the number of passes
done to the file name,

• SIGURS2: saves a checkpoint of the program state, and

• SIGINT and SIGTERM: corresponds to both actions described above and exiting
the program.

The checkpoint is compressed using LZ4, as it might consume a lot of disk space, especially
when computing high resolution spectral renderings (hundreds of megabytes).
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Chapter 4

Testing Method

The speed of convergence of both random sampling and hero wavelength sampling is pro-
gressively compared frame-by-frame using various quality metrics in comparison to a target
image (rendering with many passes, 20’000 e.g.). Each image is rendered with a resolution
of 512× 512 pixel.

The used image format is 16-bit RGB. Therefore all pixels consist of 16-bit red, green
and blue values (r, g, b). These pixels can be represented as a 3D-vector, each colour
component describing one dimension. The metric comparing between two pixels p, q can
then be formulated using the standard Euclidean distance on this RGB space (also called
the L2-norm):

∆(p, q) = |q − p| =
√

(qr − pr)2 + (qg − pg)2 + (qb − pb)2 (4.1)

4.1 Notation

Images are described as variables with either x or y and their size with N ·M pixels. The
pixels of the images are written as xij .
The average of x is:

µx =
1

M ·N

M∑
i=0

N∑
j=0

xij (4.2)

The variance of x:

σ2
x =

1

M ·N

M∑
i=0

N∑
j=0

(xij − µx)2 (4.3)

And the covariance of x and y of same size:

σxy =
1

M ·N

M∑
i=0

N∑
j=0

(xij − µx) · (yij − µy) (4.4)

Additionally, the maximum possible signal power in images is denoted with L.
In 16-bit RGB images, the white pixel fulfils this property and L is equal to the dynamic
range of the pixel values. It has u16::MAX = 216 − 1 = 65535 in all colour channels.
The maximum possible signal is therefore the magnitude of the white pixel vector:

L =

∣∣∣∣∣∣
u16::MAX

u16::MAX

u16::MAX

∣∣∣∣∣∣ = 113509.9497 (4.5)
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4.2 Quality indices and metrics

4.2.1 Mean Squared Error

The Mean Squared Error (MSE) is a simple quality index with a clear mathematical
interpretation of error in absolute terms. It measures the average of the squared pixel error
compared to the target image. Due to the nature of the squared distance value, pixels
with large errors contribute significantly to the overall MSE measure. Consequently, we
expect the rendering process to start with a high MSE value before quickly decreasing as
the rendered image at a given iteration converges towards the target image.

The value of this error metric is more relevant on the mathematical modelling side,
whereas the perceived visual quality is poorly represented via the MSE [19].

MSE(x,y) =
1

M ·N

M∑
i=0

N∑
j=0

(xij − yij)
2 (4.6)

A smaller value means smaller error and more similarity with the target image.

4.2.2 Peak Signal to Noise Ratio

The Peak Signal to Noise Ratio (PSNR) describes the ratio between the maximum possible
signal power with the actual error. Different sources may have a high dynamic range,
therefore PSNR is often described on the logarithmic decibel (dB) scale. In our case, the
highest signal power is the white pixel described above. Compared to MSE, PSNR is
closer to human perceived image quality, but still describes the errors in absolute terms
[19].

PSNR(x,y) = 10 · log10

(
L2

MSE(x,y)

)
(4.7)

= 20 · log10(L)︸ ︷︷ ︸
=101.1007

−10 · log10 (MSE(x,y))

A higher value means smaller error and more similarity with the target image.

4.2.3 Structural Similarity Index Measure

Another approach to test image quality is the Structural Similarity Index Measure (SSIM),
which is a more sophisticated approach at describing similarity or perceived quality[19]. It
tries to evaluate perceived differences in the image structure, taking into account changes
in luminance and contrast. SSIM uses some pre-defined constants where:

• c1 = (k1L)2, c2 = (k2L)2 are a small bias for division with small denominators,

• L is the above-mentioned dynamic range of the pixels (equal to the maximum signal
power), and

• k1 = 0.01, k2 = 0.03 are some default values.

SSIM(x,y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(4.8)

A higher value means less error and more similarity.
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4.3 Ratio

The aim of the above quality metrics is to assess a possible benefit of hero wavelength
sampling over random wavelength sampling. To this end, one may compute the ratio of
the former to the latter. This provides a nice overview how both sampling methods relate
to each other.

Do note however, that both PSNR and SSIM treat higher values as being more accurate
towards the target image! Therefore these values have to be inverted prior to comparison.

MSE ratio =
hero MSE

random MSE
(4.9)

PSNR ratio =
(hero PSNR)−1

(random PSNR)−1
=

random PSNR

hero PSNR
(4.10)

SSIM ratio =
(hero SSIM)−1

(random SSIM)−1
=

random SSIM

hero SSIM
(4.11)

Using this definition the following holds:

ratio =


< 1 hero sampling is better

> 1 random sampling is better

1 equivalent quality

(4.12)
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Chapter 5

Results

This chapter analyzes the convergence rate of both hero and random sampling and talks
about the benefit of spectral path tracing over normal path tracing. All target images
have been rendered using the hero sampling approach with 20’000 passes per pixel. These
target images are uses as a ground base to calculate the convergence rates.

Furthermore, there will be some argument made for using spectral vs. RGB repres-
entation.
The chapter closes with a visual analysis of spectral-path tracing vs non-spectral-path
tracing.

5.1 Convergence

The Cornell box consists of Oren-Nayar-diffuse surfaces and forms the basis for all sub-
sequent renderings. The left wall is red, the right wall is green, and all other surfaces are
white. The spherical emitter in the top left corner of the box emits strong, white light.

5.1.1 Cornell box

The following variant of the Cornell box (Figure 5.1) features a blue sphere on the ground,
showcasing soft-shadows. The ray-tracing depth is set to 8 light bounces.

Figure 5.1: The Cornell scene after 20’000 passes per pixel.
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(a) MSE: original path tracing is best
without spectral dependency. However, hero
sampling improves rapidly.

(b) PSNR: original path tracing and hero
sampling are quite close.

(c) SSIM: original path tracing is best. Both
hero and random sampling start poorly due
to reduced spectrum.

(d) Variance: original path tracing proves
best again. Hero sampling has less disper-
sion than random sampling.

(e) Ranges (legend top to bottom): (0.882, 0.923), (0.960, 1.000), (0.489, 0.837), (0.815, 0.886).

Figure 5.2: Error plots for the Cornell scene.

In this scene there is no spectral dependency as all materials are diffuse Oren-Nayar
models. No path-branching is happening inside the scene. Therefore, reducing the discret-
ised spectrum leads to the undesirable effect of introducing more colour noise. This effect
can be seen in Figure 5.2, which contains both hero and random sampling and the simpler
path tracing model. Therefore it is encouraged to trace the whole spectrum together in
scenes with no spectral dependency.

Apart from SSIM (Figure 5.2c), all error metrics consistently show less noise with hero
sampling as compared to random sampling. In Figure 5.2e, the error ratio of hero to ran-
dom sampling is visualised. After 100 passes per pixel, especially the MSE is substantially
less with being below 0.5. Therefore, the better distribution of wavelength packets inside
hero sampling shows a large benefit.
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As hinted with Figure 2.5, both spectral tracing methods start with reduced brightness
before converging towards the target image in Figure 5.1. That is the reason why the SSIM
starts with a low value of 0.336 before climbing to a high similarity of above 0.9. Since
the SSIM ratio remains so close to 1.0, this metric indicates no significant benefit of hero
over random sampling. Visually, in a low range of passes per pixel, one may perceive the
hero sampling to be much more appealing to the eye due to less colour noise. An example
is shown in Figure 5.3.

(a) Hero sampling at 4 passes per pixel. (b) Random sampling at 4 passes per pixel.

Figure 5.3: The random sampling clearly suffers from significant colour noise compared
to hero sampling.

5.1.2 Refracting spheres

This scene consists of 9 strongly refracting glass spheres inside a Cornell box (Figure 5.4).
The high number of refracting materials poses a challenge for physical rendering. The
scenery also showcases the dispersion effect very well. The ray-tracing depth is set to 10
light bounces.

Figure 5.4: The refracting spheres scene after 20’000 passes per pixel.
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Similarly to Figure 5.2, Figure 5.5 consistently converges fast in all metrics. The
variance (Figure 5.5d) for random sampling forms an exception here, where the second pass
over all pixels resulted in overtaking hero sampling for some time. This effect can happen,
as in the early phases, each pass adds a large weight to the current image. Randomly
choosing wavelengths can therefore be “lucky” to hit strongly weighted emissions which
are similar to the target image. However, the reduced discretised spectrum also has a lot
of trouble to find light sources in this scene, as all the refracting spheres pose a challenge.

All the path-branching contributes to colour noise, therefore many passes per pixel are
needed to have a good noise-free image. This effect can particularly be seen in the PSNR
(Figure 5.5b), which is still in a strong climb after 200 passes per pixel. Similarly, the
variance (Figure 5.5d) is still continuously decreasing.
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(a) MSE: hero sampling has less error than
random sampling.

(b) PSNR: hero sampling delivers less cor-
rupting noise.

(c) SSIM: both sampling methods prove to
be equal.

(d) Variance: anomaly after 2 frames, but
hero sampling again proves less dispersed.

(e) Ranges (legend top to bottom): (0.920, 0.961), (0.926, 0.999), (0.648, 0.894), (0.848, 1.010).

Figure 5.5: Error plots for the refracting spheres scene.
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5.1.3 Chinese dragon mesh

The dragon mesh consists of 1’180’060 vertices and 2’349’078 faces (after exporting with
Blender), showcasing the power of the implemented acceleration structure.

Figure 5.6: The dragon scene after 20’000 passes per pixel.

Similar to the Cornell box, we can see that the hero sampling shows improvement
in all metrics in Figure 5.7. Especially in MSE (Figure 5.7a), the ratio towards random
sampling consistently stays below 0.6 after ca. 50 passes per pixel. The PSNR is also
still in a strong climb, similar to Figure 5.5b. Hero sampling again proves to deliver less
corrupting noise. Introducing the refractive dragon is a big contributor to colour noise due
to path-branching. However, compared to the refracting spheres in Section 5.1.2 it takes
less volume inside the scene. Therefore the wavelength packets are less likely to hit the
dragon and split into discrete paths. Consequently, the resulting colour noise is weaker
than with the refracting spheres. This effect is clearly visible due to the lower error scores.
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(a) MSE: hero sampling consistently has less
error.

(b) PSNR: hero sampling has less noise than
random sampling.

(c) SSIM: both sampling methods prove to
be equal.

(d) Variance: hero sampling again proves to
be less dispersed.

(e) Ranges (legend top to bottom): (0.901, 0.942), (0.952, 1.000), (0.580, 0.849), (0.857, 0.902).

Figure 5.7: Error plots for the dragon scene.
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5.2 Spectral vs. RGB

The most prominent example to show the benefits of spectral vs. RGB rendering is
looking at the dispersion of a prism. As Rust-V is a backwards-tracing engine, it is very
inefficient to create a projection from a light source to the wall through a prism. The
statistical probability of the Monte-Carlo method to create this path in opposite direction
starting from the wall is rather low. Instead, a much simpler example shows the benefit
quite immediately by looking at the light source directly through the prism.

Light Camera

(a) The prism scene setup. (b) Spectral render-
ing

(c) Srgb rendering (d) Comparison

Figure 5.8: Looking at a spherical light source through a prism.

One can see the 36 distinct circles stemming from discretised Spectrum in Figure 5.8b.
Figure 5.8c however, delivers much less detail of dispersion due to only having 3 distinct
wavelengths. The RGB model uses the wavelengths (0.4358, 0.5461, 0.7)µm. Interesting
to see here is the fading at both ends of the spectral rendering, as according to the CIE
XYZ colour matching functions[24] (Figure 2.7).

5.3 Comparison of spectral-path and path tracing

In scenes that do not have any spectral dependency on surfaces, there is no difference
between the path and spectral-path tracing method with regard to paths taken, as no
splitting of light packets is happening. The only difference here is that the former uses
the whole Spectrum for colour calculation, whereas the latter works with subset thereof.
This reduced spectrum leads to a slower convergence rate, as seen in Figure 5.2.

It gets interesting, however, when transmitting materials like glass get introduced into
the scene. As the light packets split when hitting such a medium, the rainbow effect can
be observed.

The scenes of Section 5.1.2 and Section 5.1.3 have been retaken and compared against
the simpler path tracing method in Figure 5.9 and Figure 5.10. Additionally, a focus has
been set on some interesting areas of these renderings. These focused scenes have a more
intense lighting to see the dispersion effect more clearly.

These examples showcase the benefit of spectral rendering as opposed to only path
tracing. The missing dispersion in path tracing is a big loss in physical accuracy in these
scenes.
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Figure 5.9: Refracting spheres: spectral-path (left) and path (right) tracing at 20’000
passes per pixel each.

26



Figure 5.10: Chinese dragon: spectral-path (left) and path (right) tracing at 20’000 passes
per pixel each.
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Chapter 6

Conclusion

6.1 Summary

This work demonstrates two different methods of choosing a reduced discretised spectrum.
The convergence rate of hero wavelength sampling and random sampling has been assessed
on four different quality metrics. The results consistently prove the hero wavelength
sampling technique to outperform random sampling. It has been observed that equidistant
distribution of the reduced spectrum leads to significantly less colour noise as the rendering
progresses. Empirical error computations have shown the hero sampling to converge up
to

• 2.04x faster in Mean Squared Error,

• 1.13x faster in Peak Signal to Noise Ratio,

• 1.23x faster in variance, and

• having virtually no effect in the Structural Similarity Index Measure.

The analysis shows that random sampling results in significant colour noise as opposed to
hero wavelength sampling, indicating a reason why the latter method should be favoured.

Physically based spectral rendering promises a bright future in computer graphics.
The approach taken showcases which benefits towards photo-realism can be gained by
incorporating the simulation of light dispersion. A new rendering engine, Rust-V has
been created with guidelines from the PBRT book. Rust-V creates physically accurate
rendering even in very simple scenes.

6.2 Outlook

The used colour space is currently hard-coded in Rust-V and would need an overhaul to
be more generic. This would allow choosing different standard illuminants to simulate
different lightings.

While the current implementation follows the principles of unbiased backwards path
tracing, the performance thereof is rather low. There exist techniques like bidirectional
path tracing, photon mapping, multiple importance sampling and more, which increase the
performance drastically for representing caustics and dispersion effects. Rust-V needs a
lot of samples per pixel as it depends on randomised paths. Bad random number sequences
may therefore show diminished caustics. The approach in this work follows the principles
of unbiased path tracing in order to easily and correctly represent the physics of light
bundles.
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To further enhance the representation of physical lighting, advanced methods like
volumetrics and subsurface scattering can be implemented. The source code of Rust-V
can easily be adapted to include more features using the BxDF and Integrator traits.
Introducing more accurate camera models is also possible by implementing the Camera

trait.

Rust-V can only be used to render static images. To incorporate animations and
moving objects, it would require a rewrite of the Ray system. Simulating the shutter
speed of a camera is therefore impossible unless the whole scene remains in place without
moving objects.

Furthermore, a major performance drawback of Rust-V is the CPU-based implement-
ation. The renderer cannot be accelerated using GPUs. This decision has been made to
simplify development, debugging and keep native code safety delivered-on by the stand-
ard Rust compiler. An upcoming crate for Rust-native GPU shaders is rust-gpu[18] which
promises GPU-acceleration without leaving the Rust language. However, at the time of
concluding this thesis, the project is still in an early development stage. Some core library
features required by Rust-V are not yet working (e.g. algebraic enums and iterators).
Nonetheless, rust-gpu is a very interesting project that shows a lot of potential.

Modern technology advanced immensely as well, such that real-time ray-tracing is sup-
ported by hardware such as Nvidia RTX[13] and recently also AMD RDNA2[6]. Making
use of hardware acceleration would greatly increase the performance of Rust-V. Introdu-
cing this feature would require a deep dive into the pipelines of various graphics APIs.

29



List of Figures

2.1 Illustrating the integral over all ωi in the hemisphere Ω. Note that only
reflection is illustrated. Transmission would enter the material instead,
effectively taking the opposite hemisphere. . . . . . . . . . . . . . . . . . . . 4

2.3 Visualisation of the main BRDF for two different types of surfaces. . . . . . 5
2.4 Specular transmission: rays refract into an optically more dense material

(ηi < ηt). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 A comparison of both path (top row) and spectral path (bottom row) tra-

cing with 4, 64 and 1024 samples per pixel (left to right). The effect of
reduced brightness in spectral sampling becomes significantly visible in low
samples renderings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 The spectral sensitivity of the eye [3]. Each cone covers a large spectrum
with different sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 The CIE 1931 XYZ colour matching functions[4]. These are required to
convert spectral colour data to XYZ format. . . . . . . . . . . . . . . . . . . 10

5.1 The Cornell scene after 20’000 passes per pixel. . . . . . . . . . . . . . . . . 18
5.2 Error plots for the Cornell scene. . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 The random sampling clearly suffers from significant colour noise compared

to hero sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4 The refracting spheres scene after 20’000 passes per pixel. . . . . . . . . . . 20
5.5 Error plots for the refracting spheres scene. . . . . . . . . . . . . . . . . . . 22
5.6 The dragon scene after 20’000 passes per pixel. . . . . . . . . . . . . . . . . 23
5.7 Error plots for the dragon scene. . . . . . . . . . . . . . . . . . . . . . . . . 24
5.8 Looking at a spherical light source through a prism. . . . . . . . . . . . . . 25
5.9 Refracting spheres: spectral-path (left) and path (right) tracing at 20’000

passes per pixel each. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.10 Chinese dragon: spectral-path (left) and path (right) tracing at 20’000

passes per pixel each. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

30



Bibliography

[1] url: https://www.rust-lang.org/.

[2] url: https://graphics.stanford.edu/courses/cs348b-01/course29.hanrahan.
pdf (visited on 23/10/2021).

[3] url: https://www.unm.edu/~toolson/human_cone_response.htm (visited on
23/01/2022).

[4] url: https://commons.wikimedia.org/wiki/File:CIE_1931_XYZ_Color_

Matching_Functions.svg (visited on 26/01/2022).

[5] url: https://github.com/search?q=ray+tracer (visited on 25/10/2021).

[6] AMD RDNA2. url: https://www.amd.com/en/technologies/rdna-2 (visited on
26/01/2022).

[7] CIE 1931 color space. url: https://en.wikipedia.org/wiki/CIE_1931_color_
space (visited on 14/01/2022).

[8] ColorChecker RGB and spectra. url: https://babelcolor.com/colorchecker-
2.htm (visited on 25/10/2021).

[9] Fabrizio Duroni. ‘Spectral Clara Lux Tracer: physically based ray tracer with mul-
tiple shading models support’. In: (2016).

[10] Hyperion. url: https : / / www . disneyanimation . com / technology / hyperion/

(visited on 21/02/2022).

[11] Rudolf Langkau, Wolfgang Scobel and Gunnar Lindström. ‘Physik kompakt 2: Elektro-
dynamik und Elektromagnetische Wellen’. In: Springer Verlag, 2002, p. 247. isbn:
978-3-642-56016-3. doi: 10.1007/978-3-642-56016-3.

[12] S.K. Nayar and M. Oren. ‘Generalization of the Lambertian Model and Implications
for Machine Vision’. In: International Journal on Computer Vision 14.3 (Apr. 1995),
pp. 227–251.

[13] NVIDIA RTX Ray Tracing. url: https://developer.nvidia.com/rtx/raytracing
(visited on 26/01/2022).

[14] PBRT Version 3 Source Code. url: https://github.com/mmp/pbrt-v3 (visited
on 25/10/2021).

[15] PBRT Version 4 Source Code. url: https://github.com/mmp/pbrt-v4 (visited
on 25/10/2021).

[16] Matt Pharr, Wenzel Jakob and Greg Humphreys. Physically Based Rendering: From
Theory to Implementation. url: https://pbr-book.org/ (visited on 25/10/2021).

[17] RenderMan. url: https://renderman.pixar.com/product (visited on 21/02/2022).

[18] rust-gpu crate. url: https://github.com/EmbarkStudios/rust-gpu (visited on
26/01/2022).

[19] Umme Sara, Morium Akter and Mohammad Shorif Uddin. ‘Image Quality Assess-
ment through FSIM, SSIM, MSE and PSNR—A Comparative Study’. In: Journal
of Computer and Communications 7 (2019), pp. 8–18.

31

https://www.rust-lang.org/
https://graphics.stanford.edu/courses/cs348b-01/course29.hanrahan.pdf
https://graphics.stanford.edu/courses/cs348b-01/course29.hanrahan.pdf
https://www.unm.edu/~toolson/human_cone_response.htm
https://commons.wikimedia.org/wiki/File:CIE_1931_XYZ_Color_Matching_Functions.svg
https://commons.wikimedia.org/wiki/File:CIE_1931_XYZ_Color_Matching_Functions.svg
https://github.com/search?q=ray+tracer
https://www.amd.com/en/technologies/rdna-2
https://en.wikipedia.org/wiki/CIE_1931_color_space
https://en.wikipedia.org/wiki/CIE_1931_color_space
https://babelcolor.com/colorchecker-2.htm
https://babelcolor.com/colorchecker-2.htm
https://www.disneyanimation.com/technology/hyperion/
https://doi.org/10.1007/978-3-642-56016-3
https://developer.nvidia.com/rtx/raytracing
https://github.com/mmp/pbrt-v3
https://github.com/mmp/pbrt-v4
https://pbr-book.org/
https://renderman.pixar.com/product
https://github.com/EmbarkStudios/rust-gpu


[20] SCLT Source Code. url: https://github.com/chicio/Spectral-Clara-Lux-
Tracer (visited on 28/01/2022).

[21] Paul A. Tipler and Gene Mosca. ‘Physik’. In: ed. by Peter Kersten and Jenny Wag-
ner. Springer Spektrum, 2019, p. 1044. isbn: 978-3-662-58281-7. doi: 10.1007/978-
3-662-58281-7.

[22] Ingo Wald and Vlastimil Havran. ‘On building fast kd-Trees for Ray Tracing, and
on doing that in O(N log N)’. In: (2006), pp. 61–69. doi: 10.1109/RT.2006.280216.

[23] A. Wilkie et al. ‘Hero Wavelength Spectral Sampling’. In: 33.4 (2014). Ed. by Woj-
ciech Jarosz and Pieter Peers.

[24] Chris Wyman, Peter-Pike Sloan and Peter Shirley. ‘Simple Analytic Approximations
to the CIE XYZ Color Matching Functions’. In: Journal of Computer Graphics
Techniques (JCGT) 2.2 (July 2013), pp. 1–11. issn: 2331-7418. url: http://jcgt.
org/published/0002/02/01/.

32

https://github.com/chicio/Spectral-Clara-Lux-Tracer
https://github.com/chicio/Spectral-Clara-Lux-Tracer
https://doi.org/10.1007/978-3-662-58281-7
https://doi.org/10.1007/978-3-662-58281-7
https://doi.org/10.1109/RT.2006.280216
http://jcgt.org/published/0002/02/01/
http://jcgt.org/published/0002/02/01/

	Introduction
	Theory
	Rendering Equation
	Bidirectional Reflection Distribution Function
	Diffuse Reflection
	Specular Reflection

	Bidirectional Transmission Distribution Function
	Specular Transmission

	Integration
	Path Tracer
	Spectral Path Tracer

	Colour

	Implementation
	Colour
	Geometry
	Acceleration structure
	Bidirectional Reflectance Distribution Functions
	Objects
	Integrator
	Checkpointing

	Testing Method
	Notation
	Quality indices and metrics
	Mean Squared Error
	Peak Signal to Noise Ratio
	Structural Similarity Index Measure

	Ratio

	Results
	Convergence
	Cornell box
	Refracting spheres
	Chinese dragon mesh

	Spectral vs. RGB
	Comparison of spectral-path and path tracing

	Conclusion
	Summary
	Outlook


