
Feature Detection in Triangle Meshes

Bachelorarbeit

der Philosophisch-naturwissenschaftlichen Fakultät
der Universität Bern

vorgelegt von

Lukas Seeholzer

2021

Leiter der Arbeit:
Prof. Dr. David Bommes

Betreut durch:
Martin Heistermann
Institut für Informatik

Abstract
We propose an algorithm to quickly detect features on triangular meshes. Our
implementation of this algorithm in the OpenFlipper environment is also part
of the result of this thesis. The plugin offers an automatic detection method,
which works by extending seed edges to cyclic feature paths, where the seed
edges are found by rating the edges according to their likelihood to be part
of features based on properties in a neighbourhood such as the dihedral angle
while the extension of these edges follows a greedy approach. We also offer some
basic tools to manually refine the result of the automatic tool. We set up a dual
graph on which we perform all necessary calculations for both the automatic
part as well as the manual tools.

Acknowledgement
I would like to thank Prof. David Bommes for providing the initial idea for this
thesis, as well as for his continuous support including valuable inputs throughout
the development of this work. Furthermore, I would like to express my sincere
gratefulness to his assistant Martin Heistermann, who provided very useful in-
puts about my work at every stage and offered a good amount of motivation in
our weekly meetings. Prof. Bommes and Mr. Heistermann both were there for
me, whenever I could not progress on my own, for which I am very thankfull.

Contents

1 Introduction 1

2 Related Work 6
2.1 Related Work . 6
2.2 Differences to our Approach . 7

3 Mathematical Definition of Features 8
3.1 Definition of Feature Lines . 8
3.2 Mathematical Definitions . 9
3.3 Rating of Feature Lines . 11

4 Proposed Method 15
4.1 General Idea . 15
4.2 Creation and Use of Dual Graph 17
4.3 Calculation of Node Modifiers . 18
4.4 Calculation of Link Modifiers . 18
4.5 Detection of Seed Edges . 23

4.5.1 A remark about Dijkstra’s Algorithm 24
4.6 Extension of Seed Edges . 24
4.7 Creating Cyclic Features . 25
4.8 Repeating the Previous Steps Until All Features Are Found . . . 26
4.9 Parameters . 28

4.9.1 Modifier Weights, Extension Depth and Modifier Offset . 28
4.9.2 Amount of Features . 29

4.10 Internal Data Structure to Store Features and Work Flow 30
4.11 Manual Refinement . 31

4.11.1 Draw new Feature . 31
4.11.2 Add new Feature . 31
4.11.3 Delete Feature . 32
4.11.4 Split Feature . 32

5 Results 33
5.1 Introduction to Analysis of Results 33
5.2 Automatic Detection on some Meshes with Default Parameters

and Comparison to Trivial Algorithm 34
5.2.1 Fandisk . 34
5.2.2 AlphaRem . 36
5.2.3 Alpha Jet . 39

CONTENTS iii

5.3 Best Achievable Automatic Result by Fine Tuning Parameters . 40
5.3.1 Fandisk . 40
5.3.2 Box minus Sphere . 41

5.4 Results in Special Cases . 41
5.4.1 Shallow Features and Shallowing Features 41
5.4.2 Short Features . 42
5.4.3 Bent Surfaces . 44
5.4.4 Noise . 44

5.5 Manual Refinement . 45
5.6 Time and Space complexity . 45

5.6.1 Setting up Dual Graph . 45
5.6.2 Finding Seed Edges . 46
5.6.3 Extending Seed Edges to Cyclic Feature Paths 46
5.6.4 Automatic Part in General 46
5.6.5 Experimental Evidence of Linear Time Complexity 47

6 Continuing Work 50

7 Conclusion 54

List of Figures 55

Bibliography 55

Chapter 1

Introduction

Feature lines
Features are regions of interest on a three-dimensional object that, from

a human perception, mainly define the shape of the object. They may be
characterized as being lines along the surface of the object that have minimal
curvature in the direction of the line, have maximal curvature in the orthogonal
direction and which are generally long. On a cube, for example, there are
features running along the twelve edges, while there are no features inside the
faces. In this case it is very easy to detect the features and a very simple
algorithm (see algorithm 1) which just highlights all edges with a dihedral angle
above a given threshold would suffice to reliably find all features on this object.
In the aforementioned example, if we are given a clean mesh without any noise,
where the dihedral angles along the feature edges are all exactly 90 degrees, this
algorithm would deliver a perfect result for any angle threshold in the range of
[0°, 90°).

Figure 1.1: Simple cube consisting of 12 triangles with highlighted features

2

Algorithm 1 Simple Feature Detector(α, E)

for e ∈ E do
if φ(e) > α then

mark e as feature
end if

end for

However, there are also objects with harder to detect features and there are
regions of objects, where some dihedral angles are relatively high, but without
features. Shallow features are one class of features that can be difficult to detect.
Shallow features are lines on the surface of a mesh, where the dihedral angle
is not very sharp but which still are features as they define the shape from a
human perception. Consider an icosahedron, where the dihedral angles of the
edges are around 42°. If we applied the algorithm from before with a threshold
somewhere above 42°, then these features would not be found. However, in this
case, we could just chose a smaller threshold and the algorithm would again find
the features.

Figure 1.2: Icosahedron with highlighted features. We can see, that the dihedral
angles are not very sharp, yet they are still all features.

On the other hand consider a region of an object with some smooth curva-
ture, e.g. the side of a cylinder. Then there are some edges with dihedral angles
strictly greater than 0°. Depending on the tessellation, these angles can be con-
siderably greater than 0°. In this case we don’t want these edges to be identified
as features. Also, if there is some noise in the mesh, there might be some edges
in noisy regions where the dihedral angle is considerably greater than the angle
would be in a clean mesh. We don’t want such edges to be identified as feature
edges either. To prevent this from happening, we could just set the threshold
in the algorithm described above great enough.

A problem arises, when we have both shallow features with relatively flat

3

Figure 1.3: Fandisk with highlighted features. The feature in the front is a
shallow feature and after a certain point, it isn’t clear where the feature is
exactly, as the feature is getting shallower. We can also see that the feature
starting at the front and going to the left is shallowing and disappearing into
the plane.

dihedral angles but which are indeed features and curved regions with relatively
sharp dihedral angles but which are not considered features at the same time
or if some edges have sharp dihedral angles due to noise, where in fact, there
is no feature. In this case we can’t just apply the mentioned algorithm as
the threshold would need to be large enough to not consider edges in smooth
curved regions and noisy regions but at the same time small enough to still
find shallow features. In many cases this is not possible, and we need a more
intelligent approach to still reliably find the features.

Apart from the mentioned problems, it is not even unambiguously clear in
every case whether a certain edge is part of a feature or not. To illustrate this,
consider a shallowing feature, i.e., a feature which starts as a clear feature but
where the dihedral angle gets smaller as we proceed in one direction until it
completely vanishes in a flat surface. In this case the edges at the beginning are
clearly part of a feature but as the dihedral angle gets smaller it looks less and
less like a feature. In this case the feature just stops at some point, but it is not
clear at which point exactly.

Motivation
Many applications need to know the features of a mesh to work at all or

to be able to deliver better results. Probably the most prominent of these
applications is any form of remeshing. Transforming a triangle mesh into a
quadrangle mesh is one such possibility of remeshing, refining the tessellation,
decreasing the number of triangles to compress the file size, trying to obtain a
more regular triangulation, various transformations, e.g. from a surface- to a
volumemesh or vice-versa or smoothing can all offer advantages compared to

4

Figure 1.4: The Edges along the side of the cylinder have a dihedral angle
> 0°, however, they aren’t features. In this example, the model has quite a
high tessellation, leading to dihedral angles close to 0°. If the tessellation was
smaller, the dihedral angles would be sharper and the edges might be considered
features, which they are not.

Figure 1.5: This is a closer look at the shallowing feature in the fandisk, also
shown in Figure 1.3. We can clearly see that the feature is sharp in the front,
but gets shallower towards the rear. It is not unambiguously clear, where it
ends.

5

the original mesh. To prevent the general shape from being altered significantly
by such a remeshing operation, one can set the feature lines as unchangeable.

This thesis
The goal of this thesis is to develop a feature detection algorithm and im-

plement it as a plugin for the OpenFlipper [MK12] environment to prove its
utility in practice. The plugin should provide the user with commands to au-
tomatically detect most of the obvious features and then, in a second step, to
manually improve the selection of features.

The automatic part should be working with as little user input as possible
and still be able to reliably find the most obvious features including shallow
features but not including lines along curved regions. The time complexity of
this action is also critical, it should essentially run instantaneous to enable the
user to try different parameters to find the best result as quickly as possible
even on large meshes.

The manual part should be easy to use and provide the user with a few tools
to quickly remove features that were found by the automatic part but are not
considered actual features by the user (false positives) and add features that
were not found by the automatic part (false negatives).

We assume that the meshes, this algorithm is supposed to work on, contain
clear features, are not too noisy and are sampled rather regularly. If these
assumptions are not violated, the algorithm should deliver good results.

Chapter 2

Related Work

2.1 Related Work

[KCL09] introduce a method of feature detection on n-dimensional triangle
meshes taking into account not only the curvature but also additional attributes,
such as color. They calculate a normal voting tensor for each vertex and con-
duct an eigen-analysis of this tensor. The amount of the resulting eigenvalues
not close to 0 determines the classification of this vertex as part of a face, an
edge or a corner. After this analysis, they grow regions from seed triangles and
extend these regions in all directions until they are bordered by sharp edges.

[LL02] introduce a method based on snakes which are already used in image
analysis. This snake takes an initial position defined by the user and then
slithers towards the closest edge and follows along this feature. It does this
by optimizing an energy function dependent on the snakes smoothness and the
sharpness of the feature. The smoothness energy is calculated as the weighted
sum of the first and second derivatives of the feature line, the sharpness energy
is computed based on the normal variation of the neighbouring faces of a vertex
and is then linearly interpolated for all internal points. This method finds
feature lines that do not necessarily follow along edges and do not even have to
be on the mesh surface. In the end, all of these feature lines are then projected
onto the mesh surface.

In [MTAM+19] several different approaches to detect features on triangular
meshes are discussed. The goal was to find a subset of vertices on the mesh
that form the feature lines. The SHREC’19 track was a challenge, to which
four groups handed in their outcome. These four groups followed the following
strategies:

• Spectral based saliency estimation for the identification of features (SBSE)
by G. Arvanitis and K. Moustakas:

The proposed method consists of two steps. In the first step, vertices are
rated based on the curvature in their local neighbourhood. Based on this
rating, the vertices are grouped into five classes by a k-means algorithm. In
the second step, these vertices are clustered based on their mean curvature
to form features.

• Point aggregation based on angle and curvature saliency(PCs) by Nhat

2.2. DIFFERENCES TO OUR APPROACH 7

Hoang-Xuan, E-Ro Nguyen, Minh-TrietTran:

This group proposes two approaches. The first approach finds candidate
vertices by detecting edges with a relatively sharp angle between the two
adjacent triangles and then considering the two vertices of this edge. Then,
pairs of candidates connected by very long edges are removed and the
candidate vertices are connected to form components. Finally, very small
components are removed. The second approach computes the curvature of
the edges based on the normals of its adjacent vertices. The curvature of a
vertex is then computed as the average of the curvatures of adjacent edges.
These vertex curvatures are then refined and vertices with high curvatures
are considered as feature candidates. The vertices are then connected to
form components and finally, very small components are removed.

• Point-based multi-scale curve voting (PMCV) by T.Lejemble, L. Barthe
and N. Mellado:

This group samples the Mesh into a point cloud and then computes the
local curvatures. A voting value is assigned to each point based on the
curvatures in a local neighbourhood. Finally, a region growing process
finds the feature lines along points with similar voting values.

• Feature curve characterization via mean curvature and algebraic curve
recognition via Hough transforms (MHT)by C. Romanengo, S. Biasotti
and B. Falcidieno:

This method finds feature candidate vertices where the mean curvature
is significant. These candidates are clustered to feature lines. The curves
are then classified by Hough transforms.

[PC20] This approach finds umbilic points (points, where the curvatures in
all directions are the same) on the mesh by evaluating the principal curvatures
and then looking for local minima of κ1 − κ2. Apart from that, it finds elliptic
and hyperbolic ridges by evaluating the curvatures.

2.2 Differences to our Approach

The main difference between the mentioned related work and our approach is
that we do not consider the meshes we work on as smooth surfaces but as discrete
meshes. This prevents us from taking first and second derivatives into account,
which most of the mentioned approaches do. This gives us less mathematical
tools to work with, but it allows us to work more closely on the input mesh.
A problem that arises when interpreting a mesh as a smooth object is that a
typical object is not completely smooth. It normally consists of some smooth
patches, which are connected in non-smooth features. As it is exactly these
features we want to find, such an approach might not be optimal. If one works
directly on the discrete mesh, however, these problems do not arise.

Apart from that, there was no tool that allowed the feature detection in the
OpenFlipper environment prior to this work. So, a main goal of this work is to
provide such a tool to the users of OpenFlipper.

Chapter 3

Mathematical Definition of
Features

3.1 Definition of Feature Lines

We define a feature line as a path along edges on a triangle mesh that defines the
shape of a three-dimensional object from a human perception. Feature lines are
characterized by relatively sharp dihedral angles and relatively smooth angles in
the direction of the feature. One could also define feature lines just as lines on
the surface of a discrete mesh or even on a continuous surface. For this thesis,
however, we only consider edge paths as feature lines. We divide feature lines
in different classes:

• Long Sharp Features

These features are the easiest to detect for humans and probably also for
machines. They have sharp dihedral angles everywhere and are rather
long.

• Long Shallow Features

These features are long and their dihedral angles are relatively sharp com-
pared to a local neighbourhood which is rather flat but the dihedral angles
might be relatively flat compared to sharp features. Another characteristic
of such features is that, generally, the patches on either side are relatively
flat and large. One of the difficulties in detecting them is to distinguish
them from regions with smooth curvature such as the side of a cylinder.

• Short Sharp Features

These features have relatively sharp dihedral angles but are shorter than
the long sharp features. They often connect other sharp features and end
in sharp corners. One of the difficulties in detecting such features is to
distinguish them from high frequency noise.

• Shallowing Features

These features start off as relatively sharp features and get shallower as
they progress in one direction. The detection of such features is relatively

3.2. MATHEMATICAL DEFINITIONS 9

easy as the sharp part can be found by looking for edges with sharp di-
hedral angles. The difficulty with these features is to decide whether they
continue in a flat region or end, and if they end, at which point exactly
they end.

• Short Shallow Features

These are the most difficult to detect, as they combine the difficulties of
short features with those of shallow features. Often, it is also difficult to
distinguish such features from noise, in some cases even for humans.

3.2 Mathematical Definitions

• Mesh M(V,E,F) consisting of a set of vertices V with |V | elements and
vi ∈ V : ∀i ≤ |V |, a set of edges E with |E| elements and ei ∈ E : ∀i ≤ |E|
and a set of faces F with |F | elements and fi ∈ F : ∀i ≤ |F |.
An edge ei ∈ E connects two vertices vj , vk ∈ V, vj 6= vk, thus an edge can
also be defined as e(vj , vk). Of course, e(vj , vk) = e(vk, vj), as we work on
undirected meshes. We write vj ∈ ei iff ei = e(vj , vk) for some vk ∈ V .

The Euclidean length of an edge e is notated as |e|2
A face fi ∈ F is defined by three vertices vj , vk, vl ∈ F, vj 6= vk 6= vl, which
have to be connected by three edges, so e(vj , vk), e(vj , vl), e(vk, vl) ∈ E or
by these three edges. Thus a face can also be defined as f(vj , vk, vl) or
f(e(vj , vk), e(vj , vl), e(vk, vl)). We write vj ∈ fi iff fi = f(vj , vk, vl) for
some vk, vl ∈ V and ej ∈ fi iff fi = f(ej , ek, el) for some ek, el ∈ E.

• Euclidean length of an indexed edge |ei|2
The Euclidean length of an edge ei: |ei|2 connecting vertices vj and vk in
mesh m is the Euclidean length of the vector from vj to vk. Let pj and
pk be the three dimensional points representing the position of vj and vk
respectively, then l(e) = |pk − pj |2.

• Path

A path P (EP) is a sequence of consecutive edges in a mesh M with |EP |
edges and ∀i ≤ |EP | : ep,i ∈ EP . All edges in this path have to be in the
set E of edges of the Mesh M : ∀ep,i ∈ EP : ep,i ∈ E. The edges have to
be consecutive, i.e. ∀i < |EP | : ep,i and ep,i+1 are adjacent, i.e. ∃v ∈ V :
v ∈ ep,i ∧ v ∈ ep,i+1. We can also define such a path with the consecutive
vertices it passes through, where ∀i ≤ |EP | + 1 : vp,i ∈ EP . They have
to be consecutive, i.e. ∀i ≤ |EP | : e(vp,i, vp,i+1) ∈ EP . Additionally,
such a path may not self-intersect or contain coinciding parts, i.e. ∀i, j ≤
|EP |, i 6= j : ep,i 6= ep,j and ∀i, j ≤ |EP |+1, i 6= j : vp,i 6= vp,j . |EP | and |P |
describe the same and correspond to the amount of edges in EP and |P |2
corresponds to the Euclidean length of the path, i.e. |P |2 =

∑|EP |
i=1 |ep,i|,

the sum of the Euclidean lengths of all edges in the path.

• Angle between two Edges θ

We define the angle between two edges θ to be the angle between the two
vectors pointing along the edges in the ”same” direction. This means that

3.2. MATHEMATICAL DEFINITIONS 10

one vector points to the vertex connecting the two edges and one vector
points away from this vector. It doesn’t matter which vector points to the
center vertex and which one points away from it, the resulting angle will
always be the same. With this definition, two edges have an angle θ of
0°iff they are parallel, 90°, iff they form a 90°corner and 180°iff they are
on top of each other. In a triangle mesh which is not degenerate, the last
case cannot happen, thus θ is always in the range of [0°, 180°).
θi is the angle between the edges ei and ei+1 in a path p.

• Dihedral Angle ϕ

We define the dihedral angle ϕ of an edge to be the angle between the
normals of the two adjacent faces, such that the angle is 0 iff the two
faces are coplanar but not coinciding and is approaching π for sharper
angles. It can never become π, as this would mean that the two faces are
coinciding, which is not allowed in a non degenerate mesh. It can also
never be greater than π, as we always consider the smallest angle between
the two faces. See figure 3.1 for two illustrations of this.

Let n1 and n2 be the normals of the two adjacent triangles. Then the two
following equations hold:

– sinϕ = |n1×n2|
|n1|·|n2|

– cosϕ = n1·n2

|n1|·|n2|

The angle ϕ is now calculated the following way:

ϕ =

arcsin sinϕ, for cosϕ > 0

π − arcsin sinϕ, for cosϕ < 0
π
2 , for cosϕ = 0

(3.1)

We assume that the normals of the triangles are either all pointing out-
wards or inwards wrt. the mesh. This way, ϕ is 0, iff the two triangles
are coplanar but not coinciding, π

2 , iff they form a right angle regard-
less of the orientation (concave or convex) and π, iff they are coinciding,
which cannot happen in a mesh that is not degenerate. This means that
ϕ ∈ [0, π)

• Cost c(p)

The cost of a path is a function of the path taking into account the dihe-
dral angle ϕ of all edges in this feature, the angle θ between each pair of
consecutive edges in the feature, the smoothness of the local neighbour-
hood, i.e. the deviation of the normal vectors of the trianglefan adjacent
to the vertex in the middle and the total length of the feature. The general
idea is that the cost goes up the worse a proposed feature is, i.e. the less
likely it is that this can actually be considered a feature and the cost goes
down the better a proposed feature is, i.e. the more likely it is that this
can be considered a feature.

The definition of such a function is thoroughly developed and discussed
in the next section. We also refer to this cost function as the rating of a
feature.

3.3. RATING OF FEATURE LINES 11

(a) The dihedral angle ϕ of the highlighted
edge is completely flat, so ϕ = 0°.

(b) The dihedral angle ϕ of the highlighted
edge is exactly 90°.

Figure 3.1: Comparison of dihedral angles

A summary of these definitions as well as of all other relevant definitions
can be found in chapter 6 at the end of this thesis. We decided to have
the glossary at the end of the thesis, as different items of it get defined in
different places throughout the thesis.

3.3 Rating of Feature Lines

We would like to rate feature lines with mathematical means based on their
likelihood to be a good feature line. This rating should take into account the
dihedral angle ϕ of all edges in this feature, the angle θ between each pair
of consecutive edges in the feature and the total length of the feature. We can
divide the different properties that define the quality of a feature in three classes:

• Length

We are talking about the Euclidean length of a feature here. The longer
this Euclidean length is, the better is the feature.

• Sharpness

The sharper the dihedral angles ϕ are, the better is the feature line.

• Smoothness

The smoother the feature line along the direction of the feature is, the
better is the feature line. This means that the angles θ are all relatively
small.

Desired behaviour of the function c(P) for a path P depending on feature
characteristics:

• Length

The longer the Euclidean length |P |2 =
∑|P |
i=1 |ei|2 of the feature P gets,

the smaller the cost c(P) should be.

3.3. RATING OF FEATURE LINES 12

• Dihedral Angle ϕ (Sharpness)

To rate a feature regarding the dihedral angles, several options can be
considered:

– Minimum: P min dihedralAngles = min
|P |
i=1ϕi

This option considers only the flattest angle in the path, leading to
good ratings only for paths that have only sharp dihedral angles. In
many cases, this would be a good option and distinguishing sharp
features from moderate noise is rather easy. Also, we can be sure,
that all features found with this option are quite sharp. However,
just a few or even a single outlier with a very flat dihedral angle lead
to a very bad rating, which can make it difficult to detect shallowing
features.

– Average: P avg dihedralAngles = average
|P |
i=1ϕi

If we rate the paths based on the average dihedral angles, then a few
outliers are tolerated and a path with mainly sharp angles can still
get a good rating even if there are some bad edges in between.

– Quantiles: P q quantile = max{α : |{ϕi ∈ P : ϕi < α}| ≤ q ∗ |P |}
This approach is in some sense in between the other two approaches,
as one or, depending on the choice of q and the length of the path,
several bad outliers are tolerated and such a path might still be rated
quite well. But if the amount of bad angles gets too high, then the
rating will be very bad. If we choose q = 0.5, then we get the median
of the angles, which might rate paths with a lot of very bad angles
still relatively good. This is not a favourable behaviour, so, if we
consider the q-quantile approach, then q should be quite small.

• Angles between two consecutive edges θ (Smoothness)

To rate a feature regarding the smoothness, also several options need to
be considered:

– Sum

P sum θ =
∑|P |−1
i=1 ϕi

– Average

P avg θ = average
|P |−1
i=1 ϕi

– Maximum

P max θ = max
|P |−1
i=1 ϕi

As for the dihedral angles, there are also several options how to rate a
feature path based on its smoothness. The advantages and disadvantages
of the average and maximum option are similar to the dihedral angles.

In this case, however, calculating the sum of the angles is another option
as the angles should all be as close to 0 as possible. If the rating is
based on the sum of these angles, then a few sharp angles can already
greatly decrease the rating similar to the maximum option. In contrast
to the maximum approach, however, the sum method might return still
some acceptable rating if there are only very few sharp angles. In this
sense, the Sum approach is somewhere in between the average and the

3.3. RATING OF FEATURE LINES 13

maximum approach. However, if a simple sum is applied, then long paths
are penalized, which is definitely not a desirable behaviour. So, if we use
the sum, then we should also take the total length of the path into account.
Depending on how we take the length into account, this might effectively
result in an average.

• Mixed Situations

– Short Sharp Features

These features have relatively sharp dihedral angles: ∀i ≤ |EP | : ϕ >
α for some large α but are relatively short: |P |2 < a for some small
a. In this case we want c(P) be smaller than for paths with flatter
dihedral angles but greater than for longer paths.

– Long Shallow Features

These features are rather long and their dihedral angles are sharp
compared to a local neighbourhood which is relatively flat but the
dihedral angles might be relatively flat compared to sharp features.
We can express this with the following three inequalities:

− |EP |2 > a for some large a

− ∀i < |P | : ϕi < α for some small α

− average
|P |
i=1ϕi > averagei∈E′ϕi for some Edges E′ ⊆ E in a local

neighbourhood of P .

Shallow features are often still perceived as features by humans, so
we still want them to be detected as feature lines, so c(P) should not
be too high in such cases.

– Shallowing Features

The dihedral angles of the edges in some parts of the feature are
relatively sharp: ϕi > α for some large α but are relatively shallow
in other parts. In this case we want c(P) be relatively small and
getting smaller for longer paths as longer paths should be cheaper
than short ones but also getting bigger,if ϕ gets smaller, as shallow
features should be more expensive.

In the final rating of a feature path all of these properties should be consid-
ered in a way that as well short sharp features as long shallow features get a low
cost rating while noise, which are typically short paths with sharp dihedral an-
gles and probably also sharp angles between two consecutive edges should get a
high cost rating. Also, paths in curved regions, which are typically rather long,
might have smooth angles between two consecutive edges and also probably flat
dihedral angles should get a high cost rating.

The calculation of such a rating actually poses some problems. For example,
as described above, we would like to have a better rating for longer paths, but
also have a worse rating for paths that violate some of the feature properties.
Often, we could make a path longer by just adding some edges to it, which at
the same time might worsen the path’s feature properties. The main difficulty is
now to compare the two versions of this path and to decide which one is better.
We did not manage to come up with a function that can calculate a rating
that satisfies these requirements, so the description of this rating function in
this chapter is a purely theoretical description of a function we have not found

3.3. RATING OF FEATURE LINES 14

and may not exist. Nevertheless, we included it in this chapter for pedagogical
reasons because the behaviour of this function is helpful for identifying the
properties of features. The (purely local) modifiers, which will be discussed
in the next chapter, are based on the general ideas of this function with the
difference that they are actually implemented in the final algorithm.

Chapter 4

Proposed Method

4.1 General Idea

The fundamental idea is to build a dual graph which has the mesh edges as
its nodes and where two nodes are connected with a link, iff the corresponding
edges in the mesh are adjacent to the same vertex. For reasons of legibility
and to avoid confusion, the terms mesh, vertex and edge are used when we talk
about the original 3D mesh, while the terms graph, node and link are used for
the dual graph, based on the mesh, henceforth. For a complete list of the terms
and abbreviations we use here, please refer to chapter 6. We then calculate
modifiers on the nodes and links, which indicate the likeliness of an edge being
part of a feature line respectively the likeliness of two connected edges to be in
the same feature line. These modifiers are then multiplied with the Euclidean
lengths of the edges to obtain a modified virtual length for each link. This length
is now dependent on the likelihood of the two corresponding edges to be in the
same feature line, the likelihood of them being in a feature line at all and of
the Euclidean lengths of these edges. This allows us to run Dijkstra’s algorithm
[D+59] on the graph to determine the optimal path between two edges, following
features but also minimizing the Euclidean length at the same time.

This method immediately allows the implementation of a simple manual
feature detector, where a user can easily and effectively define a feature line of
arbitrary complexity by selecting only a few control edges. As the construction
of the graph and the calculations of the modifiers and the virtual lengths has
to be done only once in a preprocessing step and as Dijkstra’s algorithm is very
efficient, this manual selection can be calculated in real time.

The automatic detection is divided into three steps:

1. Detection of a few seed edges

Dijkstra’s algorithm is run from every node until a specified modified
distance is reached. This allows us to find the shortest path from every
touched node to the original node wrt. the modified virtual length of
the links. Of these shortest paths, the longest path wrt. the Euclidean
length is selected and for each node on this path we add the Euclidean
length of the path to a field on this node. The sum of these lengths is
then used to grade the nodes for the likelihood of being part of a feature
line. The idea is that the shortest paths wrt. the modified virtual length

4.1. GENERAL IDEA 16

tend to follow along features, so edges on features will be visited more
often than non-feature edges. Also, we don’t just count the amount of
paths running through an edge but add the Euclidean lengths of these
paths. The idea behind this decision is that the longer a path is wrt.
the Euclidean length, the more likely it is that it follows a feature and
very short paths just connecting two nodes don’t necessarily run along
features. This way, feature edges will get a higher rating because it is
more likely that many such shortest paths as described above run through
them and because the value added to their rating will probably be higher
for each path that runs through them as these paths are more likely to run
along features. So, such edges profit twice from the fact that they are in
features. This allows us to extract the nodes that are most likely in feature
lines such that we then can extend them along feature lines. The abort
condition of the Dijkstra algorithm depends, of course, on the maximal
modified virtual length. This is a parameter called extension depth that
may be altered by the user. See 4.9 for more information on the meaning
of this parameter and the effects of changing it.

2. Extending these seed edges along feature lines to form cyclic feature paths

From a seed edge, we extend the feature greedily in both directions until
they connect to another already found feature or to itself. This idea
follows the observation that features generally are not isolated but are
part of a feature network or at least closed cycles. However, it is possible
that a feature is neither connected to other features nor forming a cycle.
This case is not well covered by this approach and needs to be manually
improved in a later stage.

3. Repeating the two first steps until all features are found

From all the edges that are not yet in a feature line, we select the one with
the highest rating as the next seed edge and extend it. We repeat these
steps until we have found the specified amount of features as indicated
by the user. This is the main user input required to find as many of the
actual features as possible while having as few false positives as possible.

The important steps of this approach are more thoroughly described in the
following sections.

Following is a pseudocode illustrating the general idea described above:

Algorithm 2 Feature Detection

Create dual graph
Calculate node modifiers
Calculate link modifiers
Rate nodes based on modifiers
while not all features found yet do

Choose node with best rating not yet in any feature
Extend seed node to cyclic feature

end while

4.2. CREATION AND USE OF DUAL GRAPH 17

4.2 Creation and Use of Dual Graph

We define the following three objects:

• Node n

A node n of our dual graph g represents an edge e of the original mesh m.
As each node represents exactly one edge, we have of course |N | = |E|,
where N is the set of all nodes in g and E is the set of all edges in m.

• Link l

A link l of our dual graph g connects two nodes iff the two edges ei and
ej represented by these nodes are neighbours in the mesh, i.e. they are
connected to the same vertex v in m. In a reasonably fine tessellated
mesh, the mesh surface locally approaches a plain on average, leading to
an average vertex valency of around 6. A vertex with a valency of 6 leads
to 15 connected pairs of edges at this vertex. So, we can expect that
|L| ≈ 7.5|V |, where L is the set of links in g and V is the set of vertices
in m.

• Graph g

The dual graph g consists of a list N of nodes with ni ∈ N for i ∈ [1, |N |],
where |N | is the amount of nodes in N and |N | = |E| for the list E of
edges in the mesh m, and a list L of links with li ∈ L for i ∈ [1, |L|], where
|L| is the amount of links in L.

Figure 4.1: Triangulated Cube with Dual Graph in red. Although the under-
lying object is quite simple (8 vertices, 18 edges, 12 faces), the dual graph is
already quite complicated (18 nodes, 66 links). This is the reason why in most
illustrations, the dual graph is not shown, as this would unnecessarily complicate
the illustrations.

This graph can now be used to calculate a path connecting two edges in the
mesh by traversing g along the links.

4.3. CALCULATION OF NODE MODIFIERS 18

To do this, however, we need to assign some cost value to each link as a
function of the dihedral angles of the two edges, the angle between the two
edges, the Euclidean lengths of the two edges and possibly of other properties.
The idea is t calculate modifiers that get smaller for sharp dihedral angles,
smooth angles between the two edges and for flat regions on either side of
the two edges and larger for the opposite properties. We then multiply these
modifiers with the Euclidean lengths of the edges. This makes edges with good
feature properties to be shorter in the modified metric. With this property,
we can then find shortest paths between two nodes using Dijkstra’s algorithm,
where the shortest paths tend to follow features.

To calculate this cost, we first calculate a modifier for each node n as a
function of its dihedral angle ϕ. These modifiers get smaller for sharp angles
and bigger for flat angles.

Notation

• |n|2 = the Euclidean length of the edge represented by node n.

• n1, n2 the two nodes connected by a link l.

4.3 Calculation of Node Modifiers

Given the dihedral angle ϕ, the node modifier is now calculated the following
way:

m(n) =
π

2 ∗ ϕ
− 1

2

To prevent a division by 0, the value of ϕ is clamped to a value range of
[π
200 , π) by assigning all values of ϕ < π

200 to π
200 . We could also allow division

by 0 and define the result to be ∞. However, in this case, the modifiers of the
links could also become ∞, which would pose a problem, as we want to allow
the user to add features manually later, which relies on the Dijkstra algorithm
to work on the whole mesh. If we had links with an infinite modifier, then
Dijkstra’s algorithm would not be able to find any path through this link.

Thus, the value range of this function is in (1
2 , 100]. Now we subtract 0.5

to move the minimal value to 0. This offset will later be added again to the
total modifier. This way, however, it is possible to set this offset manually as a
parameter, as will also be described in section 4.9. The standard value for this
offset is 1

2 , so, with this standard offset value, we can regard the value range of
this function as mentioned above, but strictly speaking, it is actually in (0, 99.5].

The upper limit of this function’s range is chosen very high with the intention
that the cost of a path following nodes, that are most probably not part of
features as they have very flat dihedral angles, should be very high. Of course,
the value 100 is chosen arbitrarily and there might be better choices for this
limit.

4.4 Calculation of Link Modifiers

The rating of the links is slightly more difficult than the rating of the nodes, as
this rating should depend on the following properties:

4.4. CALCULATION OF LINK MODIFIERS 19

Figure 4.2: Node modifier: m(n) = π
2∗ϕ −

1
2

• The dihedral angles ϕ of both edges

• The angle θ between the two edges

• The flatness of the two triangle fans on either side of the common vertex

• The deviation of the dihedral angle

All of these four properties are first rated independently and a modifier for
each of them is calculated. These four modifiers are then combined by a weighted
sum to compute a general link modifier. Let’s first look at the computation of
each of the four basic modifiers:

• Sharpness modifier msh(l) depending on the dihedral angles ϕ1 and ϕ2 of
the two edges represented by the the two nodes n1 and n2.

To calculate this modifier, we can directly access the already computed
node modifiers m(n1) and m(n2), which only depend on the dihedral an-
gles ϕ1 and ϕ2.

The sharpness modifier of a link l is now just the weighted average of
m(n1) and m(n2) with the Euclidean lengths of the according edges as
weights. Thus, the formula for calculating msh(l) is:

msh(l) =
m(n1) ∗ |n1|2 +m(n2) ∗ |n2|2

|n1|2 + |n2|2
(4.1)

Please refer to sections 4.3 and 3.2 for more information on the calculation
of the sharpness modifier and the dihedral angle ϕ it is based on.

• Smoothness modifier msm(l) depending on the angle θ between the two
edges

4.4. CALCULATION OF LINK MODIFIERS 20

Figure 4.3: Smoothness modifier: msm(l) = 1
π
2−θ
− 2

π

Let θ be the angle between the two edges, where θ = 0, iff the two edges are
colinear but not coinciding, and θ = π, iff the two edges are coinciding,
which can never happen in a non-degenerate mesh. Note that a larger
angle is not possible, as θ is defined as the smallest angle between the two
edges, so θ ∈ [0, π). We then clamp all angles θ > π

2 −
1

100 to π
2 −

1
100 ,

such that θ ∈ [0, π2 −
1

100]. This allows us now to calculate the smoothness
modifier msm(l) as:

msm(l) =
1

π
2 − θ

− 2

π
(4.2)

, where msm(l) ∈ [0, 100− 2
π].

This function tends to ∞ as α tends to π
2 . The intention is, that paths

that take a 90° turn or sharper are very expensive. Note, that all θ ≥ π
2

get the same modifier. The intention behind this decision is that a feature
path should never make a 90° turn or sharper. A 90° turn is already so
bad, that it can hardly get worse, so the modifier does not get any worse
either, even if the angle is sharper.

• Neighbourhood modifier mne(l) depending on the smoothness of the tri-
angle fans on either side of the two edges.

The principle idea behind this modifier is that a feature should pass along
the feature lines of a mesh, where this feature divides a local neighbour-
hood into two relatively flat patches. Here, we only look at the immediate
neighbourhood, namely the one-ring neighbourhood of the vertex in be-
tween the two edges. In this neighbourhood, we look at the normals of
each triangle connected to this central vertex and evaluate the deviation
of these normals. Let [n1, n2, ..., nm] be the sequence of the normals of the
triangles on one side of the two edges, ordered clockwise (or counterclock-
wise) with nn1 adjacent to one of the two edges and nnm be adjacent to
the other edge represented by n1 and n2 and with m normals of m faces

4.4. CALCULATION OF LINK MODIFIERS 21

Figure 4.4: Neighbourhood modifier: 3
4 ∗ (1− cosα)

on this side of the two edges. We just consider the calculations leading to
mne(l) for the triangles on one side, the calculations for the other side are
analogous.

Note that there might be any number m ≥ 1 of faces on either side of
the two edges. If there is just one face on one side, then this patch is, in
this local neighbourhood, absolutely flat, so the modifier will become 0,
the smallest possible value. If there are several faces on this side, then we
take a look at each pair of consecutive triangles, and the dihedral angle,
they form. Let α1, α2, ..., αm−1 be the dihedral angles between these pairs
of triangles. Then the neighbourhood modifier mne(l) is calculated the
following way:

mne(l) =

∑m−1
i=1 (3

4 ∗ (1− cosαi))

m− 1
(4.3)

Note: α ∈ [0, π)→ 1− cosα ∈ [0, 2)→ mne(l) ∈ [0, 32)

The choice of this function was made in order to make sure that the
minimal value of mne is 0 as for the other modifiers.

This is now calculated for both sides, resulting in the two modifiers mne1(l)
and mne2(l), which we then can average to the final neighbourhood mod-
ifier mne(l).

We could also have chosen to consider a bigger neighbourhood, e.g. the
2-ring, which might lead to better results at the cost of longer computing
times. We did not try this out, but this might well be considered in future
improvements.

• Angle Deviation modifier mad(l) depending on the similarity of the dihe-
dral angles of the two connected edges.

In a relatively smooth and sharp feature, the dihedral angles ϕ1 and ϕ2 of
two consecutive edges e1 and e2 are probably very similar. If they weren’t,
this would mean that at least on one side of these two edges, the normals of

4.4. CALCULATION OF LINK MODIFIERS 22

Figure 4.5: Angle deviation modifier: 1
10 ∗ (m(ni)−m(nj))

2

the two adjacent triangles strongly vary. This is a hint that these two edges
are not in the same feature. This is already covered by the neighbourhood
modifier to some extent, however, there are situations, where two edges
clearly do not belong to the same feature that are not well covered by
the neighbourhood modifier, e.g. when the dihedral angles of the two
edges deviate strongly but the dihedral angles on the one ring triangle
fan on both sides only deviate gradually. On the other hand, there are
situations, where there are large dihedral angles in the neighbourhood but
the dihedral angles of the two linked edges are similar. So both modifiers
have a legitimate reason to be included, even if there is some overlap in
many situations.

We calculate the angle deviation modifier the following way:

mad(l) =
1

10
∗ (m(ni)−m(nj))

2 (4.4)

,where l is the link connecting the nodes ni and nj and m(ni) is the
modifier of node ni. As m(ni) ∈ (0, 100 − 1

2], we have that mad(l) ∈
[0, 990.025).

We now have these four modifiers for each link, so that we can just take the
weighted sum of them to calculate the final link modifier m(l). The standard
weights to calculate the weighted sum are the following:

• Neighbourhood modifier: wne = 0.2

• Sharpness modifier: wsh = 0.4

• Smoothness modifier: wsm = 0.4

• Angle Deviation modifier: wad = 1

However, these weights can be adjusted by the user. Thus, the formula to
calculate the final link modifier is:

m(l) = wne ∗mne(l) + wsh ∗msh(l) + wsm ∗msm(l) + wad ∗mad(l) (4.5)

The choice of the modifiers has a direct influence on which nodes will be
detected as seed edges and how these seed edges will be extended. For a more

4.5. DETECTION OF SEED EDGES 23

complete explanation on the effects of changing these parameters please refer to
section 4.9.

Calculation of the shortest path between two edges
An integral part of the whole algorithm is to be able to find paths running

along features. To do this, we calculate a modified virtual length |l|mv for each
link in the graph. This modified virtual length is just the sum of the Euclidean
lengths of the two edges multiplied by the link modifier:

|l|mv = (|n1|2 + |n2|2) ∗ml (4.6)

This allows us now to run Dijkstra’s algorithm to find the best path between
two edges, which minimizes the Euclidean length of this path and tries to follow
features at the same time. An attentive reader might remark that with this
formula, the Euclidean lengths of all internal edges appear twice while those of
the two edges at the ends appear only once. This is correct and while there
is an irregularity, it does not matter, as, in practice, we use this value only to
compare paths, where the same irregularity applies to all paths. The absolute
value has no meaning and is never used, just the relative values are used for
comparison with other links.

4.5 Detection of Seed Edges

The general idea behind our detection method for good seed edges is that the
shortest path between two edges, wrt. the modified virtual lengths |l|mv of the
links it passes through, generally passes through a lot of edges that are probably
good feature edges.

For each node in the graph, we run Dijkstra’s algorithm to find the shortest
paths, wrt. the modified link lengths starting from this node up to a given
maximal modified length. Of all the paths that were found, we choose the one
with the longest Euclidean length as the best path from this node. The better
a path follows along feature lines, the smaller get the modifiers and thus, the
further this path can continue until it reaches the maximal modified length. So
the longest path wrt. the Euclidean length is probably a path following along
features.

We find such a path for each node. Let such a path for node ni be pi =

(li1, li2, ..., lin) =̂ (ni1, ni2, ni3, ..., nin, nin+1), where li1 = (ni1, ni2), li2 = (ni2, ni3), ...,

lin = (nin, nin+1) and let |pi|2 =
∑n+1

j=1 |nij |2 be the total Euclidean length of the
path. We then rate each node by adding up the Euclidean lengths |pi|2 of all
such paths passing through this node. We do this with the idea that good
feature edges are more likely to be in a lot of such paths, and that paths passing
through features tend to be longer wrt. the Euclidean length. This way, edges in
features get a lot higher rating than edges that are not in features, first because
they tend to be in more such paths and second because those paths tend to be
longer wrt. the Euclidean length.

We now have all nodes rated and can select the one with the best rating to
be the first seed edge.

4.6. EXTENSION OF SEED EDGES 24

Algorithm 3 Rate Nodes

for n ∈ N do
n.rating ← 0

end for
for n ∈ N do

run Dijkstra until maximal modified virtual length reached
pathmax ← longest path in visited set w.r.t. the Euclidean length
for np ∈ pathmax do
np.rating+ = lmax

end for
end for

4.5.1 A remark about Dijkstra’s Algorithm

When running Dijkstra’s algorithm on a graph with a maximal path length as an
abort condition, it is possible to program the algorithm in a way, such that the
algorithm stops after having exceeded the maximal length or before exceeding
the maximal length. We chose to implement the Dijkstra in the latter way
as this is generally the faster option and as we noticed that for relatively small
maximal lengths, the results are better when the Dijkstra stops before exceeding
the maximal length. The bigger the maximal length gets, the smaller gets the
difference between the two options. With this choice, however, it is possible
that some nodes get a rating of 0, which might not be desirable. This happens
if all links connected to this node have a modified virtual length greater than
the maximal path length (extension depth), in which case no path with length
shorter than the maximal path length can ever pass through this node. For
this reason, we added an option to run the Dijkstra in the former way. In this
case, at least the longest path from the node itself will have a length strictly
greater than 0 and there will be no nodes with a 0 rating. In general however,
nodes that would get a 0 rating with the latter option are very unlikely to be
part of any feature, so it might even be desirable for them to have a 0 rating.
Of course, if the maximal path length is set to a great enough value, then also
nodes cannot have a rating of 0, but with the Dijkstra run in the former way,
this is guaranteed. In all the examples in the ’Results’ section and also all other
results, we used the latter mode, which is also the standard setting.

4.6 Extension of Seed Edges

Now that we have a seed edge, we extend this edge in both directions. For the
actual extension, there are a few possible approaches on how to extend them
exactly. We chose a greedy approach, as we have seen during the development
of this procedure, that the results of a greedy approach are almost as good as
any other approach we tried and it is much faster than any other approach. The
greedy version is very simple and just extends the path by the best rated link
wrt. the link modifier. We perform this node by node in two directions, one
node in each direction at a time. However, we take the current direction of the
path into account, i.e., we don’t allow the path to take a 180° turn.

With this approach, however, we need an abort condition, otherwise the path

4.7. CREATING CYCLIC FEATURES 25

would grow indefinitely. This abort condition is discussed in the next section.
Of course a non greedy approach would also be possible and might even

perform better under certain circumstances. Another possibility that we tried
to follow before settling on the greedy approach is to find a feature path that
passes through the seed edge and that follows the feature until it either vanishes
or meets another feature. This approach, however turned out to be very difficult
to implement, as we would need to rate complete paths in order to decide which
of all the possible paths running through a given seed edge is the best. Such
a rating, however, is very difficult to implement, as it would need to take into
account several different properties such as the total length of the path as well as
the sharpness and other properties, some of which we described in the sections
4.3 and 4.4. For a good feature path, we would want it to be as long and
straight as possible and as sharp as possible at the same time. If we tried to
calculate such a rating with the modifier approach we have introduced in this
chapter, then we would need to find paths that maximize the total length and
minimize the total or average modifiers at the same time. This is difficult as
longer paths, wrt. the amount of edges in it, in general would have a greater
total length but also a greater average of the modifiers. So if we put too much
weight on the total length of the path, the algorithm might come up with very
long paths that possibly go around the whole mesh, but contain some really
bad edges, and if we put too much weight on the feature properties, such as
the sharpness, the algorithm might come up with a lot of very short paths with
just one or two edges. While we were not able to come up with such a rating
for feature paths, having such a rating would be very nice to have, as it would
allow us to improve many aspects of this project, as we also describe in chapter
6. Apart from that, it is also difficult to find possible feature paths running
through a node in a non greedy way. While it is easy to find a shortest path
from one node to another w.r.t. the virtual modified length, we did not find a
way to come up with a good feature path passing through one specific node in a
non greedy way. In conclusion, there are some very difficult problems we would
have to solve to follow this approach, if we want it to deliver results that are
considerably better than with our greedy approach. Apart from that, the time
needed to find such paths with our greedy approach is very short, while a non
greedy approach would probably take a lot more time. This aspect was quite an
important one, when we decided to follow the greedy approach. In the course
of the development, however, we managed to make large parts of the algorithm
considerably faster, so now, such an approach would be feasible again. Because
of these difficulties and because we saw that the greedy approach delivered quite
good results, we went on with the greedy approach.

4.7 Creating Cyclic Features

As discussed in the previous section, we are now able to extend a given path on
both ends by one additional edge. We repeat this, until we get a cyclic graph.
This means, that the path, we’re currently working on, forms a closed cycle,
or is connected at both ends to an already found feature from a previous step.
That way, each end edge connects to a vertex that is already in a feature. Of
course, the very first feature we find, needs to build a closed cycle, as there are
no other features yet.

4.8. REPEATING THE PREVIOUS STEPS UNTIL ALL FEATURES ARE
FOUND 26

Figure 4.6: This is also regarded as a cyclic path

This idea comes from the observation that features often (almost always)
form a closed cyclic graph. The only exception to this are shallowing features,
which will be discussed later in this section. In all other cases, features connect
to other features in feature vertices or form a closed cycle.

It is also possible that the path, we’re working on, doesn’t strictly speaking
form a closed circle nor connect to another feature on both ends. This may
happen, if in one direction, the path forms a relatively small cycle and connects
to itself, but not to the other end of the cycle. This might happen, if there
actually is such a feature, where the path is following along. Another case,
however, in which we observed such a behaviour, are shallowing features. In
such cases, a seed edge might be found in a region where the feature is still a
strong feature and gets extended in both directions. In the shallowing direction,
the rating of the links gets worse and worse as the dihedral angles get flatter
and flatter. In such cases, it can happen that after some point, the rating of the
links in the most obvious direction gets so bad due to the really flat dihedral
angles, that the rating of other links is better. In this case, it often happens,
that the path forms some sort of small cycle reconnecting to a previous part of
the path.

In this case, however, the shallowing feature should actually stop at some
point. It is unclear, at which point exactly it should end, as this exact point
might be ambiguous. A possible solution for that problem would be to detect
such small self-connecting cycles, not consider them as features, and let the
feature end in the vertex, where the self-connection happened. However, this
would violate the idea of having only cyclic features, so, in such cases, we let
the feature path continue and let the user later decide, what to do with these
cases with the manual refinement tools.

4.8 Repeating the Previous Steps Until All Fea-
tures Are Found

With the previous three steps, we are now able to extend our feature graph by
closed cycles. We can repeat this until we have found all the relevant features.
To do this, however, we need an abort condition to decide, when we have found
all the relevant features. If this abort condition is too strict, there might be

4.8. REPEATING THE PREVIOUS STEPS UNTIL ALL FEATURES ARE
FOUND 27

some features that have not yet been found but are clearly features. If the
abort condition is too loose, the algorithm might consider some paths, that are
not actually features.

One possible approach for this abort condition, is for the user to define
some percentage of edges that need to be in features. With this approach,
the algorithm would continue to add cyclic features, until at least the specified
amount of edges are in features. One drawback of this approach is that some
clear features might be only added after some less clear features or noise, just
because the seed edge of the former feature has a worse rating than the one of
the latter feature. In this case, it would be impossible to add the better feature
while not adding the worse one. Also, it might not be a very intuitive user
input.

A similar approach is to let the user define the amount of features that are
considered rather than the percentage of edges in features. This way, it is easier
for the user to find the optimal solution by trying some values and settling at a
value, for which increasing and decreasing it by one both return worse results.
On the other hand, however, it might be even more difficult to get an intuition
for the optimal value than with the previous approach.

Another approach would be to rate the path to be added to the feature
network before adding it and only adding it, if it gets a better rating than a given
threshold. One drawback of this approach is, that we need another threshold,
which might be hard to set. Also, the rating of feature path candidates is not
straight forward, as several properties would have to be considered, as described
in 4.6. An advantage might be that we might be able to skip some badly rated
candidates and still add some candidates that get found later.

We decided to go with the third approach (user chooses amount of features),
as it does not depend on the ability to rate feature paths, which turned out to
be very difficult, but at the same time is relatively user-friendly. While it might
be hard to find a good value for the amount of features initially, it is not hard to
try out some values until a satisfying result has been found. For this, of course,
the program needs to be able to find new feature paths as fast as possible,
to prevent waiting times between trying out different values. Our program
satisfies this requirement, at least for relatively small meshes. On meshes with
up to a few 100’000 edges, finding a new feature path only takes a fraction of a
second. On bigger meshes, we often also need to find more features, so the time
needed to find all features might take a few seconds. On significantly bigger
meshes, this time might increase to time spans that don’t qualify anymore to be
called an instantaneous calculation. However, all features that have been found
are stored separately and don’t get deleted if the user decreases the amount of
features parameter. So, all feature paths have to be found only once, after which
increasing or decreasing the amount of features only changes the appearance of
the mesh but not the underlying data. This way, once all relevant features have
been found, trying out different values for the amount of features parameter
becomes an instantaneous operation again. Please refer to section 5.6 for a
more thorough analysis of the time complexity.

4.9. PARAMETERS 28

4.9 Parameters

The initial goal for this project was to have as few parameters as possible, the
optimal case would be an application with just one button to initiate the feature
detection, which would then find all features and find no false positives. In the
real world, however, meshes can vary in a lot of ways and finding an algorithm
with no parameters to be set by the user, is very difficult or might even be
impossible.

In our final application, there are seven parameters, which can be grouped
into two classes: (1) Modifier weights, extension depth and modifier offset to
prioritize different aspects of features over others and (2) amount of features
to find a reasonable abort condition for adding new features. Apart from these
parameters there is also the option to run the Dijkstra in a different mode when
finding seed edges, called Dijkstra abort after. For more information about the
effects of this option, please refer to section 4.5.1. We will now shortly discuss
these parameters.

4.9.1 Modifier Weights, Extension Depth and Modifier
Offset

The four modifier weights for the sharpness, smoothness, neighbourhood and
angle deviation directly have an influence on the calculation of the link modifiers
as described in equation 4.5 in section 4.4. The standard values of 0.4, 0.4,
0.2 and 1 for the sharpness, smoothness, neighbourhood and angle deviation
modifier weights respectively have provided relative good results, as can be seen
in chapter 5.

These parameters can be changed by the user to put more emphasis on some
of these aspects. If changing these values, however, the user should keep in mind
that these weights are absolute weights in the calculation of the link modifiers
and not relative weights, as can be seen in the aforementioned equation 4.5.
Because of this, if these weights are changed in a way that their total sum is
altered, the average modified virtual links will be different as well. If, at the
same time, the extension depth is not adapted, the behaviour of the Dijkstra
algorithm while detecting seed edges, can be very different than expected, which
might lead to a bad result. For example, if the modifiers are all set to very high
values, while the extension depth has a rather low value, then the modified
virtual lengths of the links become very long and the Dijkstra algorithm is
aborted much earlier than usually. This might lead to a lot of nodes (in the
most extreme case all of them) to have a rating of 0. In this case the seed
edges are chosen arbitrarily which leads to an apparently very bad choice of
seed edges. On the other hand, however, if the extension depth is much larger
than the modifier weights, the modified virtual lengths become very short and
the Dijkstra algorithm is allowed to go very far, which can lead to much longer
computing times. Also, short features are more difficult to find in this case. We
found that an extension depth of about 2-3 times the total sum of the modifiers
works best. This means that, on average, the Dijkstra finds paths containing
approximately 2-3 links.

In most cases, the standard values should deliver acceptable results, so these
parameters need only be changed on rare occasions, so a deep understanding

4.9. PARAMETERS 29

Figure 4.7: Green: all edges that were visited by Dijkstra’s algorithm with an
extension depth of 100. The origin is approximately at the center of the blue
circle

of the workings of this algorithm, especially of the underlying dual graph data
structure, is normally not needed to operate this program.

The extension depth parameter defines the maximal distance wrt. the mod-
ified virtual length that Dijkstra’s algorithm covers during the node rating pro-
cess. The actual maximal distance wrt. the modified virtual length that Di-
jkstra’s algorithm covers is calculated as this parameter multiplied with the
average edge length of the mesh. If we expect the average modifier to be around
1, then this means that during the node rating process, Dijkstra’s algorithm
covers approximately the area that can be reached within n edges, where n
is the extension depth parameter. Note that in practice, this distance can be
highly variable, as the modifiers can become very large or small, even 0.

With the modifier offset, a minimal value for all modifiers can be set. Orig-
inally, this was directly included in the calculation of all parts of the modifier.
However, we decided to externalize this value, so that it can be chosen by the
user. Now, the minimal value for all modifiers is 0, so the total link modifier
can also become 0. However, this might lead to unexpected results, as it is
then possible for a feature path to have a total length of 0, regardless of the
Euclidean distance it spans. Also, this would mean that the Euclidean lengths
of the edges have no influence on the virtual modified length of links with a
modifier of 0. So, the standard value for this offset is set to 0.5. Increasing
this value puts more weight on the Euclidean lengths of the edges and less on
the feature properties. If changing this parameter, keep in mind, that this also
alters the average modified virtual lengths of the links, so the extension depth
parameter should be adapted accordingly.

4.9.2 Amount of Features

This parameter is used as an abort condition for adding new features. A better
solution would be to rate features based on their feature qualities and then abort
adding new features as soon as there are no more features with a good enough
rating. However, we did not find such a rating, as explained in the conclusion of
section 4.4, but it would be a very nice addition to this approach, as explained
in section 6. Due to the lack of such a rating, we need some alternative abort
condition, which is provided by this parameter. The value of this parameter

4.10. INTERNAL DATA STRUCTURE TO STORE FEATURES AND
WORK FLOW 30

determines the amount of cyclic feature paths that are added one after another
to the feature network. The order in which these features are added cannot
be altered, as it is determined by the rating of the seed edges as described in
section 4.5.

4.10 Internal Data Structure to Store Features
and Work Flow

Internally, features are stored as paths passing through nodes in the dual graph.
Each of these paths consists of a list of node indices and a list of link indices
referring to the nodes and links in the dual graph. These paths are stored in two
parallel lists: (1) a list containing all features found by the automatic detection
and (2) a list containing all features that are currently displayed. By increasing
or decreasing the amount of features parameter to n, the first n paths in list 1
are copied to list 2 and list 1 is updated, i.e. a new feature has to be found, iff
more features are to be displayed than have been found so far. This means that
a feature has to be found only once, even if the user decreases and increases the
amount of features parameter over and over again. This significantly increases
the usability even on large meshes and even if a lot of features have to be
detected, as trying out different values for this parameter is possible to do
in real time. Only when starting the automatic detection, some delay might
occur on large meshes. The features in the first list, containing all feature
paths found so far, are organized in a way, such that no path passes through
a feature corner with valence ≥ 3. This means, that wherever three features
meet, they get split up in three different features and are stored in this list as
three different paths. This makes the deletion of features with the according
manual tool more intuitive. See sections 4.11.3 and 4.11.4 for clarification. In
principle, this means, that there are no feature corners with valence 2 that split
up features. However, in a circle that does not connect to any other feature,
there is a valence 2 feature corner where this path starts and ends. Unless this
feature is split up manually afterwards, however, this is not noticeable. The
manual refinement exclusively works on the second list, containing the currently
displayed feature paths. This way, even after some manual alterations have
been performed, changing the amount of features parameter should not result
in long delays. On the other hand, however, this also means, that changing the
amount of features parameter discards all manual alterations performed so far.
With this in mind, the optimal work flow is to first fine tune the parameters
of the automatic detection, until a relatively satisfying result has been achieved
and then improving this first draft with the manual tools and not changing
any parameters anymore, as this would result in a loss of the so far performed
manual improvements.

However, list 2 has a history, meaning that it is possible to return it to a
previous state with the undo and redo buttons. So, even if by accident the
user changes the amount of features parameter leading to a loss of the manual
improvements, this can be undone and the manual improvements recovered.

If any of the other parameters are changed, all modifiers have to be recal-
culated. Because of this, the two lists described above as well as the working
history are cleared.

4.11. MANUAL REFINEMENT 31

4.11 Manual Refinement

The main focus of this work has been to create an automatic feature detection
that delivers as good a result as possible with as few clicks as possible in as
little time as possible. However, such a first draft might still include some false
positives, miss some false negatives, or some of the found features might not
exactly meet the users expectations. For these cases we included a few tools to
enable the user to correct these errors as quickly as possible and with as few
clicks as possible. Some of these tools use some of the data calculated in the
automatic part, in particular, the dual graph and the modifiers. So this part of
the program might seem independent of the automatic part, but it is not, and it
requires the precalculations of the automatic part to be computed before it can
be used. We tried to limit the amount of tools as much as possible, to make it
as easy to use as possible. Following is a description of the four tools we provide
with a short description of the functionality, followed by a short description of
the underlying mechanics to better understand their working.

4.11.1 Draw new Feature

With this tool, the user can add a new feature by selecting a few control edges.
Clicking on an edge starts a new path and enables the preview of the feature path
to the edge the mouse is hovering over. Clicking on another edge fixes the path
to that edge and allows to continue the path from this edge onward. Clicking
on the same edge twice or creating a closed cycle ends this path, which is then
treated as a path found by the automatic part. Pressing ’u’ on the keyboard
undoes the last click and allows the user to continue defining the feature from
the previous edge. Pressing ’u’ when only one edge has been selected, allows
the user to select a new edge to start a feature path. This mode is especially
useful to find longer features, running along parts that might not be very clear
features or defining the exact end of a shallowing feature.

The shortest path between two edges is found using the Dijkstra algorithm
on the modified virtual length of the links in the dual graph, see section 4.4
for more information about this. So, the path between two edges should follow
along features while being as short as possible. In this case, the Dijkstra has
to be calculated only once, when clicking on a new edge. This might take
some time, which might result in a delay right after the click, but, since the
Dijkstra algorithm is very fast, this delay only gets noticeable for very large
meshes with more than a few 100’000 edges. After the Dijkstra algorithm has
been performed, finding the shortest path is very fast and should not lead to
noticeable delays, even on very large meshes.

4.11.2 Add new Feature

This tool is similar to the previously described one, but it allows adding short
and clear features with fewer clicks than the other tool, while it is less useful for
adding complex features. Only one edge has to be selected, and a feature path
passing through this edge is then proposed to the user. This proposal cannot
be altered and is displayed in blue. After a click by the user, this proposal is
fixed and thereafter treated as a path found by the automatic part.

4.11. MANUAL REFINEMENT 32

To find such a path running through a specific edge, the same algorithm as
for the extension of seed edges of the automatic part is used. See section 4.6 for
a more thorough explanation of that procedure.

4.11.3 Delete Feature

This tool allows the user to quickly delete any unnecessary features with only
one click. By hovering over a detected feature, this feature gets colored blue,
by clicking on it, it gets deleted. A feature path starts and ends in a feature
node with valence ≥ 3 or 1 or in any point defined by the split feature tool. See
section 4.10 for an explanation of the underlying data structure.

4.11.4 Split Feature

This tool allows the user to split a feature path at a certain vertex into two sep-
arate paths. This modification is not immediately visible on the mesh, however,
it allows the user to delete only a part of a feature. Other than for deleting
features, this alteration has no consequences. No tool is provided to merge two
paths, as the only reason to do this, would be to be able to delete both paths
at the same time. In this case, however, providing such a tool would not make
the process of deleting both paths any faster than just deleting one path after
the other, so it would essentially be superfluous.

Chapter 5

Results

5.1 Introduction to Analysis of Results

In this chapter, we compare the results of our algorithm to the features as they
are perceived by humans as the desired result, and, at the same time to the
results of a trivial feature detection algorithm. The trivial feature detection
algorithm we consider here, is an algorithm that just marks all edges of a mesh
as feature edges, if their dihedral angle is sharper than a given threshold ϕ. This
algorithm was already described in the introduction as algorithm 1. We take a
look into different aspects of the resulting program of this thesis and into some
special cases that pose difficulties in finding features. We define two cases of
possible errors: false positives and false negatives. These two classes of errors
are quite straight forward in the case of feature detection: false positives are
edges that were detected by the algorithm to be features, where, from a human
perspective, there is actually no feature. False negatives are features, that are
indeed features from a human perspective but that the program has failed to
detect.

We will also compare the results of our algorithm to the simple algorithm
and will use the amount of clicks it takes a user to improve the result to achieve
the optimal result as a metric to compare the usability of the two algorithms.
When we count clicks, we only count the necessary clicks directly on the mesh.
Clicks, dragging the mouse or pressing buttons on the keyboard to adjust the
view or select tools are not counted. This, however, gives an unfair advantage to
our plugin, as a user would probably need to change tools several times during
the manual improvements, where changing a tool also needs one click on the
corresponding button. The alternative without our plugin would be to select
single edges. This requires far more clicks in general, however, as there is only
one tool, there will be fewer clicks for changing the tools. So, to fairly compare
the two alternatives and get an impression of which alternative is faster, one
should keep this in mind and multiply the necessary clicks for our plugin by
2. However, in all examples, our plugin needs by far fewer clicks than the
alternative, so even when we perform this adjustment, our plugin is still the far
better option. We will not comment on this again, henceforth.

5.2. AUTOMATIC DETECTION ON SOME MESHES WITH DEFAULT
PARAMETERS AND COMPARISON TO TRIVIAL ALGORITHM 34

5.2 Automatic Detection on some Meshes with
Default Parameters and Comparison to Triv-
ial Algorithm

5.2.1 Fandisk

As the first example, we take a look at the fandisk model. The mesh we used
here contains 25’994 Vertices, 77’976 Edges and 51’984 Faces. Although this
is already a lot of data, our algorithm still works instantaneous. Given that
the simple dihedral angle algorithm is much simpler than our algorithm, it also
works instantaneous.

Let us first have a closer look at the fandisk and identify the features that
should be found, those that might be found and regions where no features should
be found. 5.1 shows some of these regions.

In figure 5.1a, we see all the features on the fandisk that are obvious features
and that should definitely be found by any feature detector algorithm. 5.1b
shows a shallow feature, that might be more difficult to find, but that still
definitely can be classified as a feature. 5.1c highlights a shallowing feature.
This feature should be detected, although it is not unambiguously clear, where
it stops or if it stops at all or just continues, until it meets another feature. We
decided to let it stop at a position where the dihedral angle has become quite
flat. 5.1d shows a short and shallow feature. This is especially difficult to find,
as it combines two difficult characteristics. 5.1e shows all the above mentioned
features and is the desired result. Finally, 5.1f shows some false positives that
might occur at the back. These should not be found even though they have
dihedral angles considerably sharper than most edges.

Now, let us have a look at the result of our algorithm and compare it to the
result of the simple dihedral angle algorithm.

The simple algorithm with a threshold angle of 23°, as we can see in figure
5.2b, delivers an almost perfect result with no false positives. But a part of the
shallow feature in the front is missing, consisting of 10 edges. Also, the shallow-
ing feature on the left side suddenly stops. In this case, it is not unambiguously
clear, where exactly the feature stops, or if it even stops at all. If we assume that
the feature should continue until it meets the sharp feature, 10 edges would be
missing. It also misses the short and shallow feature shown in 5.1d, consisting
of 12 edges.

Correcting the two false negatives with the tools OpenFlipper provides would
mean that the user would need to select all missing edges individually, taking
22 to 32 additional clicks.

The result of our automatic detection with the standard parameters is, as
we can see in figure 5.2a, identical to the result of the simple algorithm apart
from three locations: The aforementioned shallowing feature, as well as the
shallow feature are continued until they meet another feature here and there
is an additional false positive passing through the bent area on the left side
consisting of 32 edges. The short and shallow feature is still missing. To obtain
a perfect result, we need to get rid of the new false positive, which can be done
in one click with our manual tools, add the short shallow feature with one click
and possibly shorten the shallowing feature, which takes one click to split up the

5.2. AUTOMATIC DETECTION ON SOME MESHES WITH DEFAULT
PARAMETERS AND COMPARISON TO TRIVIAL ALGORITHM 35

(a) Obvious Features (b) Shallow Feature

(c) Shallowing Feature (d) Short and Shallow Feature

(e) Desired Result (f) False Positives

Figure 5.1: Here we see different categories of features and possible regions
where false positives might occur on the fandisk.

5.2. AUTOMATIC DETECTION ON SOME MESHES WITH DEFAULT
PARAMETERS AND COMPARISON TO TRIVIAL ALGORITHM 36

(a) Automatic Detection with 13 displayed
features

(b) Simple Detection with a threshold angle
of 23°.

Figure 5.2: Comparison of the two algorithms on the fandisk

feature at the desired position and another click to delete part of it. Altogether,
we need between two and four clicks to obtain a perfect result.

Compared to the 22 to 32 clicks needed with the simple algorithm, our 2
to 4 clicks are of course a lot better, however in large parts due to our simple
manual refinement tools.

5.2.2 AlphaRem

The second example, we look at is the AlphaRem model. It consists of 10’002
vertices, 30’024 edges and 20’016 faces. Again, let us first have a closer look at
this mesh to identify the features.

(a) Front (b) Back

Figure 5.3: AlphaRem model with obvious features

In figure 5.3 we can see the AlphaRem model with the obvious features high-
lighted. There are still some features that are not so sharp as they are rounded
off, but from a human perception, they would still be considered features.

In figure 5.4 we can see some of the less obvious features on the AlphaRem
model. These are features that are rounded off, but probably still count as
features. If one takes a closer look at the models, one can see that the features

5.2. AUTOMATIC DETECTION ON SOME MESHES WITH DEFAULT
PARAMETERS AND COMPARISON TO TRIVIAL ALGORITHM 37

(a) Front (b) Back

Figure 5.4: Less obvious features on AlphaRem

are not so straight as the previous features we have seen. The exact course of
the feature is also quite ambiguous, there are many possibilities how we can
define the feature in these cases. What we show here in these figures is just one
of these many possibilities. However, we would like a feature detector program
to come up with a result that approximates this optimal solution.

Let us now compare the results of our automatic algorithm and the simple
dihedral feature detector.

(a) Front (b) Back

Figure 5.5: Result of our automatic algorithm on the alphaRem model with 28
displayed features

If we take a look at the result of our algorithm, as seen in figure 5.5, where
we chose to display 28 features, we see a lot more differences to the optimal
solution, than in the previous example. Our algorithm has found all features we
categorized as ”obvious”, apart from one short feature seen in the front view in
the lower center. Of course, the dead ends we had in the optimal solution were
continued by our algorithm such that they connect to another feature, as dead
ends are not allowed in our algorithm. Regarding the features we categorized as
”less obvious”, our algorithm has failed to find most of these. Some, however,
have been found. It would take too long to describe all the similarities or

5.2. AUTOMATIC DETECTION ON SOME MESHES WITH DEFAULT
PARAMETERS AND COMPARISON TO TRIVIAL ALGORITHM 38

differences here, so we go without it here. However, we counted the differences
and came up with the following statistics: We found 6 paths of false positives,
consisting of 52 edges in total and 17 paths of false negatives, consisting of 293
edges in total. Of course, counting these errors, especially the false negatives,
is extremely difficult, as the course of the feature is not clear in many cases and
sometimes it is even not clear, whether there is actually a feature.

If we wanted to correct this result of the automatic feature detection, we
would need to delete the 6 false positives, which would take 6 clicks with our
delete tool, or rather 8 clicks, as we need to split up a feature on two occasions
to prevent deleting too much. Adding the missing features takes about 11 clicks
with the ”add feature tool”. It takes fewer clicks than we found false negatives,
because there are cases, where we can add several features with one click, if for
example, this feature that gets added, crosses a feature vertex where no other
feature has been found so far.

In total, it takes 19 clicks to improve the result of the automatic part to a
perfect result.

Now, let us compare this to the result of the simple algorithm.

(a) Front (b) Back

Figure 5.6: Result of the simple Algorithm on the AlphaRem model with a
threshold angle of 35°

When we take a look at the result of the simple algorithm in figure 5.6,
we can immediately see, that, while the clear features have been found pretty
well, the less obvious features are very much less clear. We get a rough idea
where these features approximately are, but the result is just a bunch of mostly
unconnected single edges or short paths of edges, and we can also see many false
positives. Again, counting false positives and false negatives is very difficult, so
we only counted the most obvious false positives and found 87 such cases. We
did not count the false negatives, there are just too many of them. We can spot
immediately several features, where many edges are missing, so we can safely
assume that there are by far more than 100 false negatives, probably several
hundred. Again, without any other possibility to manually select all feature
edges, in this case it would take far more than 100 clicks to achieve a perfect
result. In this case, our plugin definitely allows the detection of all features
much faster than the simple algorithm. In this example we also see that the
result of our automatic detection is a lot better than the result of the simple

5.2. AUTOMATIC DETECTION ON SOME MESHES WITH DEFAULT
PARAMETERS AND COMPARISON TO TRIVIAL ALGORITHM 39

algorithm, so in this case, the improvement is not only due to the manual tools.

5.2.3 Alpha Jet

Thirdly we look at the alpha jet model, consisting of 36’473 vertices, 109’413
edges and 72’942 faces.

(a) Front (b) Back

(c) Bottom (d) Top

Figure 5.7: Desired result on the alpha jet model

This model seems to be a lot more difficult to handle for our algorithm than
the previous two models. We need to add 30 features in order to make sure
that the most obvious features get detected. However, by that time, also a lot
of false positives get detected. Counting all false positive edges would take too
long, so we just note here, that there are about 25 paths of false positives, each
containing many edges. However, thanks to our manual tools, the removal of
these false positives should not take too long, at most 3 clicks per path (splitting
the feature at both ends and deleting the middle part). So, even in this case, it
should be possible to obtain the desired result with a few dozen clicks.

Let us now compare this result to the result of the simple algorithm:
Unsurprisingly, the simple algorithm did a good job in detecting the sharp

features, e.g. on the wings, but failed to find the shallower features, e.g. around
the cockpit. There are already some false positives, e.g. inside the engine, as
can be seen in figure 5.9a. Again, most false positives are single edges or very
short paths, making it very time-consuming to correct them. We found around
100 false positive edges without searching very thoroughly, so there might be

5.3. BEST ACHIEVABLE AUTOMATIC RESULT BY FINE TUNING
PARAMETERS 40

(a) Front (b) Back

(c) Bottom (d) Top

Figure 5.8: Result of our automatic detection on the alpha jet model

more. We also found a few false negatives, however not many. The prominent,
though shallow, feature around the cockpit alone consists of about 160 edges
and is missing in this result. So, even if there are not many false negative paths,
there are still many false negative edges. To manually improve this result, at
least 260 clicks are needed.

In conclusion, our algorithm still offers a better alternative for this model,
even though the result of our automatic detection is not very good.

5.3 Best Achievable Automatic Result by Fine
Tuning Parameters

5.3.1 Fandisk

If we finetune the parameters in order to have more weight on the sharpness
and angle deviation modifiers than in the standard settings, the false positive
we had in the previous example does not occur anymore. The parameters set in
this case were 2, 0.5, 0.5, 1 and 8 for sharpness-, smoothness-, neighbourhood-,
angle deviation modifiers and the extension depth respectively, as opposed to
0.4, 0.4, 0.2, 1 and 4 in the standard settings. This result is perfect apart from
the short shallow feature shown in figure 5.1d.

5.4. RESULTS IN SPECIAL CASES 41

(a) Front (b) Back

(c) Bottom (d) Top

Figure 5.9: Result of the simple algorithm on the alpha jet model

5.3.2 Box minus Sphere

In this example we used a mesh that consists of a perfectly regular cube, where
on one face, a part of a sphere was removed. It consists of 26’161 vertices,
78’477 edges and 52’318 faces. The resulting feature along the intersection of
the cube and the sphere is quite shallow with an angle of about 8°. As we can
see in figure 5.11, both algorithms have found all the features with the right
parameters. Our algorithm only found the shallow feature, if the extension
depth parameter is set large enough. We set the parameters to 4, 4, 2, 1,
50 for the sharpness, smoothness, neighbourhood and angle deviation modifier
weights and the extension depth, respectively. At the same time, for the simple
algorithm, the threshold angle has to be somewhere between 1° and 7°.

5.4 Results in Special Cases

5.4.1 Shallow Features and Shallowing Features

As we have seen in 5.10a and 5.10b above, the two shallow features have been
detected quite well by our algorithm. For most parts, the simple dihedral-angle
algorithm discovers them just as well, however, in the case of the shallowing
features, the discovered features from the simple algorithm stop at some point,
whereas in our algorithm, the features continue until they meet with another

5.4. RESULTS IN SPECIAL CASES 42

(a) Desired Result (b) Best achievable Result

Figure 5.10: Best achievable result on Fandisk

(a) Automatic detection,
standard parameters

(b) Automatic detection,
better parameters (c) Simple detection

Figure 5.11: Automatic algorithm with different parameters and simple algo-
rithm on Box minus Sphere

feature. It is difficult to say, which behaviour is better in this case, as it is
not unambiguously clear, whether the feature stops at some point and if yes,
at which point exactly it stops. This decision possibly also depends on the the
application for which the features are needed. So, it is not possible to say, which
algorithm does a better job in this case.

In the case of the box minus sphere model, shown in figure 5.11, both algo-
rithms were able to detect the shallow feature given the right parameters.

Also, in regard of the user-friendliness, there is not a big difference, as in
both cases, the user needs to provide some choices for parameters.

5.4.2 Short Features

If we take a look at the fandisk, we discover several relatively short features.
Finding these features with the simple algorithm is no problem at all, as the
length of a feature has absolutely no influence on finding the features. With our
algorithm, however, this poses a difficulty, as the algorithm needs a seed edge
in each of these features to find them, or they need to be detected from another
feature next to the short feature. In 5.2a, we see, that all of these features were
found.

In this example, however, we see that our algorithm has some problems de-
tecting short features. In the mesh micro usb holder, consisting of 484 vertices,
1’446 edges and 964 faces, there are many sharp features that only consist of one

5.4. RESULTS IN SPECIAL CASES 43

(a) Simple Detection, 23 degrees, shallow
features stop at some point

(b) Automatic detection, 13 Features, shal-
low features continue until they meet other
feature

Figure 5.12: Comparison of the behaviour on shallowing features

(a) Automatic, 73 features (b) Simple algorithm, 45°

Figure 5.13: This example shows some limits of our algorithm, as the result
of the simple algorithm is a lot better. This is mainly due to the irregular
triangulation of the mesh.

edge. Our algorithm has not found all of them, even after 73 displayed features,
while it has already found many false positive in the bent areas. The simple
algorithm finds all of these features without problems, as it is not dependent
on the feature length. This example shows some of the limits of our algorithm,
there are cases, where it is definitely worse than the simple algorithm. The
triangulation of this mesh is not at all uniform with many extremely long and
sharp triangles. Such a triangulation is useful in such cases to decrease the
amount of triangles to limit the amount of data needed to store the mesh. How-
ever, our algorithm works best on uniformely triangulated and finely tessellated
meshes. If these requirements are not met, as it is the case here, our algorithm
has a very poor performance.

5.4. RESULTS IN SPECIAL CASES 44

(a) noisy cube with automatic detection, 5
features (b) noisy cube with simple detection, 60°

Figure 5.14: Noisy cube with results of automatic and simple algorithms

5.4.3 Bent Surfaces

In 5.1f, the highlighted edges are not actually features, but just edges with a
dihedral angle sharper than most other edges, because they are part of a curved
region. There are quite a lot of such regions on the fandisk, where no features
should be found. In 5.2a, we see that only one such possible false positive
occurs. Of course, if we increased the amount of features to be found, at some
point, also such edges would be detected as features. The result of the simple
algorithm does not include any of these false positives, as long as the threshold
angle is large enough. If we compare the result of our algorithm to the result
of the simple algorithm, we can remark that both algorithms include such false
positives, if the corresponding parameters are set accordingly. However, if a
mesh contains a shallow feature with edges with angle < ϕ and a bent region
with edges with dihedral angles > ϕ for any ϕ, then it is not possible to find
no false positives and miss no false negatives with the simple algorithm, while
our algorithm is able to achieve this, under certain circumstances. For example
on the fandisk, as we see in 5.2, our algorithm finds the shallow features, while
finding only one false positive in a bent area, while the simple algorithm finds
no false positives either, but misses some parts of the shallow features.

5.4.4 Noise

In this example, we have a cube with some noise, created with the OpenFlipper
Noise Plugin with a maximal distance of 0.005, which corresponds to about one
third of the average edge length. It consists of 26’161 vertices, 78’477 edges and
52’318 faces. Both algorithms are having some trouble with the noise, while
both algorithms still find most of the feature edges along the actual features
and only find few false positives. However, the result of the simple algorithm
includes a great number of single edges that are unconnected and are definitely
no features. At the same time there are many gaps in the found features along
actual features. Both issues do not occur in our algorithm, as such features are
not allowed. This leads to longer paths of false positives and longer stretches
along actual features of false negatives. But the total amount of false positives
and false negatives is smaller. The result of our algorithm is also a lot better

5.5. MANUAL REFINEMENT 45

suited to be manually improved, as only a few features have to be removed or
added to achieve the optimal solution, while manually improving the result of
the simple algorithm would be very time consuming.

If a mesh gets too noisy, however, our plugin cannot achieve good results
anymore. After a certain degree of noisiness the result of the automatic detection
is not much more than some arbitrary paths on the surface. However, the simple
algorithm is not able to handle too much noise either and provides very bad
results as well for too noisy meshes. The example we provided here has a level
of noise such that the result of the simple algorithm is not useful at all while
the result of our algorithm is not perfect, but still a lot better than the one of
the simple algorithm.

5.5 Manual Refinement

In the noisy cube example used in 5.4.4, the result of the simple algorithm
includes 550 false positives, most of them unconnected to any other detected
edges and 64 false negatives, again most unconnected to other false negatives.
In order to correct these errors manually, one would need to manually click on
each of those edges. The result of our algorithm, on the other hand, includes 41
false positives, forming 4 paths and 17 false negatives, forming 3 paths. With
the manual tools of our program, correcting these errors works the following
way: splitting up features, such that the correct false positives can be deleted:
5 clicks, deleting the 4 false positives: 4 clicks, adding the 3 false negatives: 3
clicks with the add feature tool. Altogether, this takes 19 clicks, not including
clicks needed to select and change the according tools and to adapt the view.
If we compare this to the result of the simple algorithm and assume that the
fastest way to change the state of an edge to or from a feature edge is to just
select or unselect the according edge, then the time needed to obtain a perfect
result is by far shorter with our program than without it. Without it, it would
take about 614 clicks to just change the states of all the false positives and false
negatives. The described method to select features manually by clicking on each
single edge is indeed the fastest way to achieve this goal in OpenFlipper. So,
regarding this, our plugin indeed provides an essential improvement.

We also made this observation in the three examples at the beginning of this
chapter.

5.6 Time and Space complexity

Let us analyse the time and space complexity of the different parts of our algo-
rithm:

5.6.1 Setting up Dual Graph

A polyhedron in general is a sparse graph, which means that O(|V |) = O(|E|),
due to Euler’s formula, as well as its dual graph, so O(|N |) = O(|L|). As each
node in the dual graph represents an edge in the mesh, altogether this gives us
O(|V |) = O(|E|) = O(|N |) = O(|L|). The graph consists of a list of nodes and
links, so the whole graph as a data structure as well as the time to set it up
is in O(|E|). After setting up the graph, the modifiers are calculated. These

5.6. TIME AND SPACE COMPLEXITY 46

calculations take place in a small neighbourhood of the according nodes and
links, so it is also in O(|E|). In conclusion, the whole process of setting up the
dual graph is in O(|E|).

5.6.2 Finding Seed Edges

To find the seed edges, we run Dijkstra’s algorithm from each node until a
specified maximal depth to obtain a rating for each node. See section 4.5 for
a detailed description of this process. Let d be this maximal depth. Then,
the amount of visited nodes is in O(d2), or, if d is sufficiently large, such that a
considerable part of the total mesh is covered, in O(|E|). As described in section
4.5, d is calculated as a user specified parameter multiplied with the average
edge length of the mesh. The visited subgraph of the dual graph is also sparse,
so the amount of visited links is also in O(d2). The Dijkstra algorithm has a
time complexity of O(|E| ∗ log(|V |)), so in this setting, the time complexity is
in O(d2 ∗ log(d2)). As we perform this process for each node, the total time
complexity to calculate the rating of the nodes is in O(|E| ∗ d2 ∗ log(d2)). This
process has to be done once per mesh, and has to be redone if any parameters
have changed, not however, if we just want to find more features with the same
parameters on the same mesh. Once the rating of the nodes has been performed,
we only need to find the node that has the highest rating and is still available.
This process can be done in O(|E|). If we consider d as a constant and if
d << |E|, then this whole process is in O(|E|).

5.6.3 Extending Seed Edges to Cyclic Feature Paths

This part of the algorithm is greedy, meaning that we extend the path one edge
by another in both directions until it forms a cycle. In the decision which edge
we take for the extension, only the direct neighbours are considered and have an
influence on our choice. In general, vertices in meshes have an average valence
of about 6, so the amount of possible extensions can be considered a constant.
The feature path has to be extended until it forms a cycle. This is guaranteed
to happen after O(|E|) extensions, as such a path cannot include more than
all available edges. However, in practice, a cycle will be obtained much faster,
especially, if other features have already be found, as the chance increases of
meeting one of them. After each extension, we need to check, whether we have
met another feature or if we have to continue. This is just a local computation
and can be considered to run in constant time. So, finding a new feature path
is also definitely in O(|E|).

5.6.4 Automatic Part in General

The automatic part mainly consists of the three aforementioned parts, all of
which run in linear time, as we have seen. So the complete algorithm should
also run in linear time. All data that is calculated is stored directly in the dual
graph data structure, apart from the found features, which are stored as lists of
indices of nodes in the dual graph. These lists are all definitely in O(|E|), as an
edge can never be in more than one feature path and we certainly cannot have
more feature paths than edges in the mesh. With the space complexity of the
dual graph being in O(|E|9, as we have seen in section 5.6.1, we can conclude

5.6. TIME AND SPACE COMPLEXITY 47

that this algorithm has linear time and space complexity for reasonably small
values of d (d << |E|).

5.6.5 Experimental Evidence of Linear Time Complexity

In the previous sections, we have conjectured, that our automatic algorithm
runs in linear time. Following are two experiments to show that this also holds
in practice.

A note on the experiment setup:
We executed this experiment on two meshes: (1) The fandisk, we already

used previously, consisting of 25’994 vertices, 77’976 edges and 51’984 faces
and a simple cube, as seen in 1.1, consisting of 8 vertices, 18 edges and 12
faces. Starting with these meshes, we repeatedly subdivided the meshes to get
finer tessellations. In each subdividing step, each triangle gets split up to four
smaller triangles. With each step, the amount of edges and the amount of
faces are multiplied by four exactly and the amount of vertices is multiplied by
approximately four (To be exact, the formula is |V |′ = 4 ∗ |V | − 6). For each of
the resulting meshes, we let our algorithm run 10 times and measure the time
it took for the three main stages:

• Setting up dual graph and calculating all modifiers, and the modified
virtual lengths

• Rating the nodes, finding the first seed node and extending it to the first
feature path

• Finding further feature paths.

The second part also includes finding the first feature path because, given
the structure of our algorithm, it was a lot easier to measure the time for both
steps rather than for each step independently. However, as we have seen, both
steps should run in linear time, so the combination should also run in linear
time.

For the third part we decided to add ten more features to the fandisk and
only three more features to the cube, as after four features, all features on the
cube are found. Anyway, this number does not really matter, as we are mainly
interested in the asymptotical growth of computing time, not the actual time it
takes for this complexity analysis.

We repeat this until a further refinement of the mesh is not possible anymore
due to a memory shortage, which was the case after about 4’000’000 edges. The
times in the resulting analysis are just the average of these 10 independent
experiments.

Let us start with the fandisk:

Edges 77’976 311’904 1’247’616 4’990’464
Dual Graph Setup 392 1’719 7’150 30’030
Node Rating 75 365 1’525 6’384
Features 2 to 11 117 625 2’377 9’412
Total 585 2’710 11’054 45’826

Table 5.1: Time in ms for automatic detection on Fandisk in different sizes

5.6. TIME AND SPACE COMPLEXITY 48

To get a better understanding of the asymptotical growth, we also provide
the dual table 5.2 where we can see the factor from one size to the next for all
four metrics.

Edges 4.000 4.000 4.000
Dual Graph Setup 4.385 4.159 4.200
Node Rating 4.867 4.178 4.186
Features 2 to 11 5.341 3.803 3.959
Total 4.632 4.078 4.146

Table 5.2: Dual Table to 5.1

In this table we can clearly see the linearity of our algorithm. For an even
better impression on the complexity, we also provide the graph of this table at
the end of this section. Note, that this is a linear graph, while the mesh size
grows exponentially, so the smaller samples are barely visible. However, the
linearity is still apparent.

The second example is the cube. Here, we have a lot more data, because
the base mesh is a lot smaller, so we were able to refine it a lot more often
until the hardware limits were reached. However, the smaller samples are also
more prone to errors in measurement and other constant factors can influence
the runtime more significantly than in larger samples. The results for the cube
with less than 4’608 edges were left out, because they are not very significant
as time measurement is very inexact for small periods of time.

Edges 4’608 18’432 73’728 294’912 1’179’648 4’718’592
Dual Graph Setup 25.2 94.7 437.5 1’833.6 7’481.3 29’966.2
Node Rating 4.8 19.3 96.9 417.8 1’651.2 6’527.2
Features 2 to 4 2.8 10.6 60.7 249.9 986.1 3’916.1
Total 32.7 124.6 595.0 2’501.2 10’118.5 40’409.5

Table 5.3: Time in ms for automatic detection on a cube in different sizes

Again, let us look at the dual table, that shows, as in the previous example,
the factors from one size to the next

Edges 4.000 4.000 4.000 4.000 4.000
Dual Graph Setup 3.757 4.619 4.191 4.080 4.005
Node Rating 4.021 5.020 4.312 3.952 3.953
Features 2 to 4 3.786 5.726 4.117 3.946 3.971
Total 3.810 4.775 4.204 4.045 3.994

Table 5.4: Dual table to 5.3

We can see again that the algorithm clearly works in linear time. For an
even better impression of this, let us have a look at the graph. As for the
previous graph, keep in mind, that the graph is linear, while the size growth
of the samples is exponential, so the smaller samples are not really visible in
the graph. This is why we don’t see the irregularities mentioned before in this
graph.

5.6. TIME AND SPACE COMPLEXITY 49

(a) Graph of table 5.1 (b) Graph of table 5.3

These two examples show very clearly, that the algorithm indeed runs in
linear time, supporting our conjecture in the previous sections.

Chapter 6

Continuing Work

The result of our work allows to efficiently detect the features on a triangle mesh
and also provides the user with some simple but powerful manual tools to im-
prove the result of the automatic detection. However, during the development,
many ideas came up to improve the performance and usability of this program.
The most important are listed here:

• Rating of feature curves

Rate possible features in a way that satisfies the properties defined in
chapter 3. If we had such a rating, we could easily add some very nice
functionality to the program, some of which are described below. The dif-
ficulty lies in calculating such a rating that satisfies the desired properties.

• Non greedy feature extension

Finding the best possible path through a given seed edge, rather than
extending it greedily in both directions, would probably lead to better
results, especially some false positives that cross flat regions would be less
likely to occur. This would take significantly more time than the current
approach, which is, regarding the current time complexity, no big issue.
It would also require a good rating of features such as defined in section
6 to compare possible features. One of the reasons why we decided to
implement a greedy approach was the computing time it took for a non
greedy version in early development, so we decided quite early to follow
this approach. However, during the development, we implemented several
improvements regarding the computation time and with the resulting time
complexity being rather fast, this option now has become feasible again.

• Superset

This option is not planned to be actually implemented, it is just a different
goal that could alternatively be set. While we tried to find an optimal
result as fast as possible, the defined goal could also be to find a superset
of the features, being a set, that guarantees to contain all features, but
might also contain some false positives. This would make it easier in some
way to manually refine the result to obtain an optimal result, as we could
concentrate on removing false positives and would not have to bother to
be able to add additional features. It would also enable us to implement

51

a second step in the automatic part which would only need to detect false
positives and remove them. It is not clear, which of the two options would
be easier or faster to implement or more useful.

• Automatic abort condition for adding new features

In our program, the user must provide the program with a parameter
called ”Amount of Features”, which is used to know when to abort finding
new features. If we were able to rate features, we could abort adding
new features as soon as there are no more features with a good enough
rating. However, this would lead to another parameter, namely the rating
threshold that may not be surpassed, but this threshold would probably be
applicable to many different meshes and would not depend on geometry,
size and tessellation, as the current parameter does.

• Extending the plugin to work on arbitrary polygonal meshes

Right now, our program only works on triangle meshes. Extending it in
a way that it also works on other polygonal meshes would greatly im-
prove the usability as it would enable the plugin to be used on many more
meshes. The resulting program does not rely on the fact that we are work-
ing exclusively on triangular meshes, so adding this functionality should
not be too difficult.

• Considering more properties for the calculations of the modifiers

In this paper, we considered the dihedral angle ϕ (sharpness), the angle
between the two edges ϑ (smoothness), the flatness of the one-ring neigh-
bourhood and the deviation of the dihedral angle ϕ for the calculations of
the modifiers. Other properties might be used as well or the properties we
considered might be extended, e.g. the region considered for the flatness
of the neighbourhood so far is only the one-ring of the central vertex, the
two-ring or a dynamical local neighbourhood could be used instead.

• Debugging graphic representation

Unfortunately, there have been some bugs regarding the representation of
the mesh in OpenFlipper, leading to strangely colored edges. Whether
these bugs are caused by this plugin or some other OpenFlipper function-
ality is not yet known.

Glossary

• Mesh m

A mesh is the fundamental object we are working on. It consists of vertices
vi, edges ei and faces fi in a way that each edge connects two vertices and
each face is bordered by some edges and vertices. Our algorithm only
works on triangle meshes, meaning that all faces are triangles.

• Vertex v

A Vertex v in a mesh is defined by its three dimensional position in space.

• Edge e

An edge e always connects exactly two vertices v1 and v2 and is defined
by them. Two vertices are connected by at most one edge.

• Face f and normal

A face f in a triangular mesh is defined by the three vertices it connects
or by the three edges that form its borders. We can define a face normal
vector as the perpendicular vector through the plane this face lies in.

• Node n

A node n of our dual graph g represents an edge e of the original mesh m.

• Link l

A link l of our dual graph g connects two nodes n1 and n2 iff the two edges
e1 and e2 in m represented by these nodes are neighbours in the mesh m.

• Dual graph g

The dual graph g consists of a list N of nodes with ni ∈ N for i ∈ [1, |N |],
where |N | is the amount of nodes in N and |N | = |E| for the list E of
edges in the mesh M , and a list L of links with li ∈ L for i ∈ [1, |L|],
where |L| is the amount of links in L.

• Modifier of node n: m(n)

Each node n is assigned a modifier based on dihedral angle of the edge
it represents, i.e., the likelihood of this edge to be in a feature line. See
section 4.3 for the complete calculation of this modifier.

• Modifier of link l: m(l)

Each link l is assigned a modifier based on the sharpness modifier, smooth-
ness modifier, neighbourhood modifier and . See section 4.4 for the details
of the computation of this modifier.

53

• Modified virtual length mvl(l)

The modified virtual length of a link is the result of the ”Rating of Links”
part of our algorithm, described in section 4.4. It depends on the modifiers,
the modifier weights and the Euclidean lengths of the two adjacent edges
e in the mesh m. For an exact definition of the calculation, please refer to
equation 4.5.

• Euclidean length of edge e: l(e)

The Euclidean length of an edge e: l(e) connecting vertices v1 and v2 in
mesh m is the Euclidean length of the vector from v1 to v2. Let p1 and
p2 be the three dimensional points representing the position of v1 and v2
respectively, then l(e) = |v2 − v1|2.

• Dihedral angle ϕ

The dihedral angle ϕ is the angle that is formed by the two adjacent faces
of an edge in the mesh. We always consider the smaller angle, so it is
always in [0, 180]°. As we do not consider degenerate meshes as valid
inputs, we can even exclude the 180° case and actually get ϕ ∈ [0, 180)°.
φ is used to calculate the node modifier mn.

The definition of the dihedral angle we used in this paper defines ϕ = 0° for
two faces that are coplanar but not coinciding and ϕ = 180° for two faces
that are coinciding. This definition differs from the general definition of
the dihedral angle, which is defined exactly the other way round. However,
we found it more convenient to work with this definition and one definition
can be easily converted into the other one by subtracting ϕ from 180°.

• Angle between two edges ϑ

The angle between two adjacent edges ϑ is the smallest angle between
two edges. Again, as we only consider non degenerate meshes, we get
ϑ ∈ [0, 180)°.

• False positives

When we compare the result of the automatic feature detection with the
optimal feature network, we might find some edges that have been detected
as features by the algorithm, but that are not actually features. Such edges
are called false positives.

• False negatives

When we compare the result of the automatic feature detection with the
optimal feature network, we might find some edges that are actually fea-
tures but that have not been detected by the algorithm. These edges are
called false negatives.

Chapter 7

Conclusion

The goal of this thesis was to identify feature lines along mesh edges in math-
ematical terms and to implement a plugin for the OpenFlipper environment to
enable a user to quickly find all features on this mesh in as little time as possible.
This plugin should be an addition to the OpenFlipper environment that actually
improves the workflow of an average user trying to identify the features to use
them for further modifications or calculations on the mesh. Before this thesis,
OpenFlipper provided no such functionality, so our resulting program certainly
is a useful addition for its functionality, even though it is far from perfect.

We defined feature lines in mathematical terms in chapter 3, where we fo-
cused on a function that evaluates a possible feature path. We described the
desired behaviour of such a function, which helped us to identify the relevant
properties of features. However, we were not able to actually construct such
a function. The lack of such a function prevented us from implementing some
desired features in the final algorithm, such as automatically finding all features
without any user input. The development of such a function would enable us
to improve the algorithm in several different ways, as described in chapter 6.

However, even though we had no such function, we were still able to imple-
ment a plugin that generally provides relatively good results. Our algorithm
consists mainly of two steps, (1) finding seed edges and (2) extending these seed
edges to feature paths. The first part is done by a rating algorithm that takes
a relatively small neighbourhood of the edge into account. This part works rel-
atively well, given well chosen parameters for the modifier weights. However,
choosing the best modifier weights is up to the user and is not always an easy
task. If the mesh contains a lot of difficulties, such as noise, shallow features,
short features, bent surfaces or irregular tesselation, then it might be very dif-
ficult to find parameters that work well for the whole mesh. In many cases,
however, it is possible to achieve relatively good results, often even without
changing the standard parameters.

The manual tools we also provide in the plugin make manually postprocess-
ing the result quite simple and fast and the combination of the automatic and
manual part allow a user to identify all features in a short time with a rather
small amount of work.

So, while there are still some aspects to be improved, mainly in the automatic
detection part, the plugin altogether certainly provides the average user with a
fast and powerful tool to quickly identify the features.

List of Figures

1.1 Cube with features . 1
1.2 Icosahedron with highlighted features 2
1.3 Fandisk with features . 3
1.4 Cylinder with features . 4
1.5 Shallowing feature on fandisk . 4

3.1 Comparison of dihedral angles . 11

4.1 Triangulated cube with dual graph 17
4.2 Node modifier formula . 19
4.3 Smoothness modifier . 20
4.4 Neighbourhood modifier . 21
4.5 Angle deviation modifier . 22
4.6 Unintuitive cyclic graph . 26
4.7 Visualization of edges visited by Dijkstra’s algorithm 29

5.1 Classes of features on fandisk . 35
5.2 Comparison of algorithms on fandisk 36
5.3 AlphaRem model with obvious features 36
5.4 Less obvious features on AlphaRem 37
5.5 Result on alphaRem . 37
5.6 Result of simple algorithm on alphaRem 38
5.7 Alpha jet with features . 39
5.8 Result on alpha jet . 40
5.9 Result of simple algorithm on alpha jet 41
5.10 Best achievable result on Fandisk 42
5.11 Visualization of impact of parameters 42
5.12 Comparison of the behaviour on shallowing features 43
5.13 Limits of our algorithm . 43
5.14 Comparison of different algorithms on noisy cube 44

Bibliography

[D+59] Dijkstra, Edsger W. u. a.: A note on two problems in connexion
with graphs. In: Numerische mathematik 1 (1959), Nr. 1, S. 269–
271

[KCL09] Kim, Hyun S. ; Choi, Han K. ; Lee, Kwan H.: Feature de-
tection of triangular meshes based on tensor voting theory. In:
Computer-Aided Design 41 (2009), Nr. 1, 47 - 58. http://

dx.doi.org/https://doi.org/10.1016/j.cad.2008.12.003. –
DOI https://doi.org/10.1016/j.cad.2008.12.003. – ISSN 0010–
4485

[LL02] Lee, Y. ; Lee, S.: Geometric Snakes for Triangular Meshes.
In: Computer Graphics Forum 21 (2002), Nr. 3, 229-238.
http://dx.doi.org/10.1111/1467-8659.t01-1-00582. – DOI
10.1111/1467–8659.t01–1–00582

[MK12] Möbius, Jan ; Kobbelt, Leif: OpenFlipper: An Open Source
Geometry Processing and Rendering Framework. In: Boisson-
nat, Jean-Daniel (Hrsg.) ; Chenin, Patrick (Hrsg.) ; Cohen,
Albert (Hrsg.) ; Gout, Christian (Hrsg.) ; Lyche, Tom (Hrsg.)
; Mazure, Marie-Laurence (Hrsg.) ; Schumaker, Larry (Hrsg.):
Curves and Surfaces. Berlin, Heidelberg : Springer Berlin Heidel-
berg, 2012. – ISBN 978–3–642–27413–8, S. 488–500

[MTAM+19] Moscoso Thompson, E ; Arvanitis, G ; Moustakas, K ;
Hoang-Xuan, N ; Nguyen, E R. ; Tran, M ; Lejemble,
Thibault ; Barthe, Löıc ; Mellado, Nicolas ; Romanengo, C
; Biasotti, S ; Falcidieno, B: SHREC’19 track: Feature Curve
Extraction on Triangle Meshes. In: 12th EG Workshop 3D Object
Retrieval 2019. Gênes, Italy, Mai 2019, 1 - 8

[PC20] Pouget, Marc ; Cazals, Frédéric: Approximation of Ridges
and Umbilics on Triangulated Surface Meshes. Version: 5.0.2,
2020. https://doc.cgal.org/5.0.2/Manual/packages.html#

PkgRidges3. In: CGAL User and Reference Manual. 5.0.2. CGAL
Editorial Board, 2020

http://dx.doi.org/https://doi.org/10.1016/j.cad.2008.12.003
http://dx.doi.org/https://doi.org/10.1016/j.cad.2008.12.003
http://dx.doi.org/10.1111/1467-8659.t01-1-00582
https://doc.cgal.org/5.0.2/Manual/packages.html#PkgRidges3
https://doc.cgal.org/5.0.2/Manual/packages.html#PkgRidges3

	Introduction
	Related Work
	Related Work
	Differences to our Approach

	Mathematical Definition of Features
	Definition of Feature Lines
	Mathematical Definitions
	Rating of Feature Lines

	Proposed Method
	General Idea
	Creation and Use of Dual Graph
	Calculation of Node Modifiers
	Calculation of Link Modifiers
	Detection of Seed Edges
	A remark about Dijkstra's Algorithm

	Extension of Seed Edges
	Creating Cyclic Features
	Repeating the Previous Steps Until All Features Are Found
	Parameters
	Modifier Weights, Extension Depth and Modifier Offset
	Amount of Features

	Internal Data Structure to Store Features and Work Flow
	Manual Refinement
	Draw new Feature
	Add new Feature
	Delete Feature
	Split Feature

	Results
	Introduction to Analysis of Results
	Automatic Detection on some Meshes with Default Parameters and Comparison to Trivial Algorithm
	Fandisk
	AlphaRem
	Alpha Jet

	Best Achievable Automatic Result by Fine Tuning Parameters
	Fandisk
	Box minus Sphere

	Results in Special Cases
	Shallow Features and Shallowing Features
	Short Features
	Bent Surfaces
	Noise

	Manual Refinement
	Time and Space complexity
	Setting up Dual Graph
	Finding Seed Edges
	Extending Seed Edges to Cyclic Feature Paths
	Automatic Part in General
	Experimental Evidence of Linear Time Complexity

	Continuing Work
	Conclusion
	List of Figures
	Bibliography

