
Flesh Simulation with Application to Character Animation

Bachelor Thesis

submitted in fulfillment of the requirements for the degree
Bachelor of Science (B.Sc.)

at the

University of Bern
Institute of Computer Science

Examiner: Prof. Dr. David Bommes

Handed in by: Corina Danja Masanti
Matriculation number: 15-128-655

Date of submission: 06.11.2020

Abstract

This thesis explores the process of simulating the fleshy appearances of
virtual characters. The focus lies on the formulation of the deforma-
tion energy. In order to accurately simulate a fleshy look, nonlinear
hyperelastic energies have proven to be the best choice. But simulat-
ing volume-preserving biological tissues such as flesh yields more than a
few mathematical and physical challenges. Achieving rest stability while
working with a high Poisson’s ratio can be named as an example. Inspired
by the complexity of this field, this thesis serves as an entry-level doc-
ument. Relevant mathematical and physical aspects are presented and
explained in an introductory manner. In addition, this thesis includes
some more detailed calculations to bridge the gap between an expert in
the field and a beginner. At the end of this thesis, I am presenting a few
results visually to conclude the studies.

Acknowledgements

I would like to thank Prof. Dr. Bommes for supervising my thesis and
for helping me find this topic. Furthermore, I would like to express a
special thanks to Nicolas Gallego-Ortiz for the numerous discussions and
advice he gave me during the process. In addition, I would like to thank
Breannan Smith for taking the time to answer my questions.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Structure . 2

2 Background 3
2.1 Notation . 3

2.1.1 General Notation 4
2.1.2 Tensor Notation 4
2.1.3 Summary . 5

2.2 Concepts of Continuum Mechanics 5
2.2.1 Deformation . 5
2.2.2 Deformation Gradient 7
2.2.3 Deformation Energy 8
2.2.4 Material Constants 10

2.3 Mathematical Background 11
2.3.1 Singular Value Decomposition 12
2.3.2 Polar Decomposition 13
2.3.3 Frobenius Norm 13

2.4 Deformation Gradient 14
2.4.1 Singular Value Decomposition of F 14
2.4.2 Polar Decomposition of F 14
2.4.3 Relative Volume Change 15
2.4.4 Cauchy-Green . 15

3 Stable Neo-Hookean Flesh Simulation 16
3.1 Deformation Gradient 16
3.2 Energy Formulation . 17

3.2.1 Stability . 17
3.2.2 Existing Neo-Hookean Energies 19

Contents IV

3.2.3 Rest Stabilization 22
3.2.4 Meta-Stability under Degeneracy 24
3.2.5 Lamé Reparameterization 25

3.3 Energy Analysis . 25
3.3.1 First Piola-Kirchhoff Stress (PK1) 26
3.3.2 The Energy Hessian Terms 27
3.3.3 The Tikhonov, Mu, and Gradient Terms 28
3.3.4 The Volume Hessian 31
3.3.5 The Complete Eigensystem 36
3.3.6 Conclusion . 38

4 Practical Experiments 40
4.1 Technology . 40
4.2 First Experiments . 41

4.2.1 Comparison of different Input Variables 44
4.3 Additional Tests . 48

4.3.1 Cylinder . 50
4.3.2 Scramble Test . 51
4.3.3 Experiments on a more complex Mesh 52

4.4 Optimization . 55
4.4.1 Newton’s Method 55
4.4.2 Conjugate Gradient 56

4.5 Discussion . 56

List of Figures A

List of Tables B

Code C

List of abbreviations D

Bibliography E

Chapter 1

Introduction

“Animation offers a medium of storytelling and visual entertainment
which can bring pleasure and information to people of all ages every-
where in the world.”
- Walt Disney

1.1 Motivation

With steadily increasing computational power, the demand for better-
looking results is constantly growing. Especially in the field of animation
and simulation, various research has been done to avoid mediocre results.
In the entertainment sector, these findings were used to present movies
of the highest quality for people all over the world. Animation studios
like Pixar© have made groundbreaking progress over the years. This can
easily be observed by comparing today’s work with that from ten years
ago.

As always, there are different requirements for each use case. In some
cases, an exaggerated movement or reaction has a better effect on the
viewer. A massive explosion, for example, looks more spectacular in a
movie when it is not physically correct. In other scenarios, the animation
should come as close as possible to reality. For instance, adding small
details like visible breathing or wrinkles offers a way to get more convinc-
ing results. A good animation should create the illusion of a character
with personality, thoughts, and emotions. But in order to create this

Chapter 1 Introduction 2

illusion, an animated character has to move and physically interact with
its environment as it would in reality. Otherwise, the human brain would
immediately recognize that some things do not add up. One aspect for
achieving this realistic effect is the simulation of the fleshy appearances
of virtual characters. In the paper Stable Neo-Hookean Flesh Simulation
([SGK18]), the authors addressed exactly this problem and formulated a
new deformation energy for simulating human flesh. This thesis is based
heavily on this paper. In the following, I will abbreviate the name of the
paper with SNH-FS.

But before diving further into the content of the paper, a fundamental
background is needed. In order to animate a physical movement, a ba-
sic understanding of the physics behind it is necessary. This knowledge
requires some experience in the field of continuum mechanics. Unfortu-
nately, for most of the students in computer science, it has yet to be
learned. This thesis should help students of computer science who are
interested in the field of animation and simulation but are still beginners.
Therefore, the goal of this thesis is to explain the necessary physical and
mathematical background. In addition, I will go deeper into the themat-
ics of the paper SNH-FS. I will go through some of their calculations more
detailed to help the reader to follow the thought process of the authors. I
aim to get an understanding of their contribution to the field and extend
the code they provided to test the energy with practical experiments.

1.2 Structure

In the following, I will deliver an introduction into the field of continuum
mechanics and give a brief overview of the necessary mathematical back-
ground. Next, I will go through the ideas mentioned in the paper SNH-FS
and include some calculations and visualizations that serve for a better
understanding. Lastly, I will give insights into the implementation of the
energy and show the results of the practical experiments I conducted.

Chapter 2

Background

The goal of the paper SNH-FS was to simulate the fleshy appearance
of virtual characters. In order to follow their thought process, we first
need to understand the physical and mathematical interpretation of a
deformation. This chapter serves as an introduction into the field of
continuum mechanics and describes the mathematical background needed
to understand the calculations and conclusions. At the beginning of this
chapter, I will define the notation that I will use throughout this whole
thesis. Next, I will present some concepts used in continuum mechanics,
which are crucial for this field. Thirdly, I will give some insights into the
mathematics used in continuum mechanics. However, I will not include
each proof explicitly, as there are already many resources for an interested
reader. Finally, I will introduce a few calculations and conclusions that
will be useful to understand the methods used in the paper SNH-FS.

2.1 Notation

This section defines the notation that is used throughout this thesis to
avoid misunderstandings. I am using the common notation used in con-
tinuum mechanics taken from the book Continuum Mechanics ([Spe80]).
Additionally, I am including some more specific declarations formulated
and used by the authors of the paper SNH-FS.

Chapter 2 Background 4

2.1.1 General Notation

Scalars are represented by regular, normal-weight variables such as a,
whereas tensors and matrices are represented by upper-case bold letters,
such as A. Vectors will be denoted by bold lower-case variables like a.

2.1.2 Tensor Notation

Furthermore, I am using the tensor notation used in SNH-FS. Similar
to Golub and Van Loan ([GV12]), the authors decided to define the
vectorization vec(·) as column-wise flattening of a matrix into a vector:

A =
a c

b d

 vec(A) =

a

b

c

d

Additionally, 4th order tensors in a form of matrix-of-matrices will be
used in the calculations in chapter 3. These matrices are denoted by
using blackboard bold:

A =

a c

b d

 i k

j l

e g

f h

 m o

n p

 =
 [A00] [A01]

[A10] [A11]

By vectorizing A we get the following result:

vec(A) =
[

vec (A00)
∣∣∣∣∣ vec (A10)

∣∣∣∣∣ vec (A01)
∣∣∣∣∣ vec (A11)

]
= Ǎ

In order to point out that a matrix is vectorized, I am using the symbol
·̌ above the letter. The term above is equivalent to

Ǎ =

a e i m

b f j n

c g k o

d h l p

 .

Chapter 2 Background 5

The advantage of this form is that we can write several expressions as
a cross product. This property will be used in chapter 3 to simplify
complicated expressions and calculations.

2.1.3 Summary

Here is a quick overview of the introduced notation:

a : Scalar
A : Matrix or tensor
a : Vector
A : Matrix-of-matrices
Ǎ : Vectorized matrix-of-matrices (also written as vec(A))

2.2 Concepts of Continuum Mechanics

This section gives a broad introduction to some of the concepts used in
continuum mechanics. In continuum mechanics, we are less interested in
small particles like atoms or molecules of an object but rather in pieces
of matter that are large in comparison. The reason for this is that the
calculation for the behaviour of individual atoms is challenging for larger
systems. Therefore, we are concerned with the mechanical behaviour
of solids and fluids on the macroscopic scale and treat the material as
uniformly distributed throughout regions of space. With this approach,
it is possible to define quantities such as displacement and density as
continuous functions of the position ([Spe80], p. 1).

2.2.1 Deformation

When studying an object, we are among other properties interested in
how it may change its shape over a certain period of time. If the object
undergoes a change of shape, we call this process a deformation. In order
to produce a deformation, there must be at least one force present that
interacts with the object. Typically, we apply one or multiple forces over

Chapter 2 Background 6

an object and are then interested in its deformed state. The term strain
is used as a measure of deformation, and we denote stress as the force
per unit area.

Graphically, we can imagine a deformation with the help of a two-
dimensional deformation map, as shown in Fig. 2.1. The ellipse on
the left side represents an object in its rest state. A function φ maps this
rest state of the ellipse to a deformed state as shown on the right side of
the image.

Figure 2.1: Deformation Map

We can imagine that we map each particle of a chosen object from its
rest state to a deformed one. We can characterize each particle X of a
body by a vector x containing its positional coordinates. This vector is
the reference configuration. If we displace the particle, we can describe
its new coordinate vector x′ with

x′ = φ(x).

Example: A simple example of a deformation is the stretching of a
cuboid along the x- and y-axis, as illustrated in Fig. 2.2.

Figure 2.2: Stretching of a cuboid

Chapter 2 Background 7

The coloured volume in Fig. 2.2 represents the cuboid in its rest state.
In this case, the vector x contains the three coordinate values for the x-,
y-, and z-axis:

x =

x

y

z

After the stretching, the new position for each particle can be calculated
by

x′ = φ(x) =

1.5x + 0y + 0z

0x + 2y + 0z

0x + 0y + 1z

 =

1.5x

2y

z

 . (2.1)

2.2.2 Deformation Gradient

An essential quantity in continuum mechanics is the deformation gradient
F. It serves as a characterization of the deformation. With its help, we
can calculate properties like the change of volume or length of an object
during a deformation. We can obtain F by using the function φ discussed
in the previous section and taking the derivative of each component of φ

with respect to each component of the reference vector x. In the following,
we only work with deformations in the three-dimensional space. In that
case, F is a (3× 3)-matrix and can be calculated by

F =
[

φ(x)
∂x

∣∣∣∣∣ φ(x)
∂y

∣∣∣∣∣ φ(x)
∂z

]
. (2.2)

For simplification, I will use this representation of F in the upcoming
chapters:

F =
[

f0

∣∣∣∣∣ f1

∣∣∣∣∣ f2

]
=

f0 f3 f6

f1 f4 f7

f2 f5 f8

 (2.3)

In this equation, fi are the column vectors, and fi symbolize the scalar
entries of the matrix. F can be useful for us to find out more about the
deformation. For example, we know that if F is equal to the identity
matrix I, there is no deformation present. That would be the case for
rigid body displacements. In addition, F can be factorized and used to

Chapter 2 Background 8

calculate other quantities. That will be explained in section 2.4 after
introducing the needed theorems in section 2.3.

Example: I am again taking the example of stretching the cuboid from
Fig. 2.2. We can obtain the resulting deformation gradient of this example
with the help of Eq. (2.2) applied to Eq. (2.1):

F =
[

φ(x)
∂x

∣∣∣∣∣ φ(x)
∂y

∣∣∣∣∣ φ(x)
∂z

]
=

∂[1.5x]

∂x
∂[1.5x]

∂y
∂[1.5x]

∂z
∂[2y]
∂x

∂[2y]
∂y

∂[2y]
∂z

∂[z]
∂x

∂[z]
∂y

∂[z]
∂z

 =

1.5 0.0 0.0
0.0 2.0 0.0
0.0 0.0 1.0

As we can see, F is not equal to the identity matrix, so we are sure
that the object was indeed deformed. For this simple example, this
information might seem unnecessary because the visualisation already
shows that the cuboid gets deformed, but for more complex deformations,
this information is very useful.

2.2.3 Deformation Energy

We can deform an object by putting a certain amount of force into the
system. We could, for example, stretch a spring. The spring then stores
some amount of potential energy. If we let the spring go, we transfer the
potential energy to kinetic energy, and the spring usually recovers into its
rest state. This energy that the spring stores during the deformation is
called deformation energy or strain energy Ψ. The strain energy density
is the strain energy per unit volume. Any increment of the strain energy
density is equal to the work done by the stresses in order to alter the
strains ([Kor17], p.10). That means that energy is an indicator of how
much force must be applied to deform an object in a certain way. Thus,
we can use the deformation energy to express the relationship between
the stresses and strains. We can illustrate this with a stress-strain curve
shown in Fig. 2.3. The area under the stress-strain curve corresponds to
the strain energy density.

Chapter 2 Background 9

Figure 2.3: Example for a stress-strain curve1

As we can see in Fig. 2.3, with increasing stress, the object goes through
different states. Before reaching the yielding point illustrated with Yield
stress, the material has the ability to recover into its rest shape. This
ability is called Elasticity ([Ber15], p. 211). After this point, the ma-
terial cannot recover anymore due to permanent fractures during the
deformation.

In addition, we can see that at the beginning of the curve, we have a
straight line until the first black dot. That means that the relationship
between the stresses and strains is linear. This is called Linear Elasticity
([Kor17], p. 5). Linear elasticity is strictly related to Hooke’s law, which
states that the resulting deformation is proportional to the applied force
and that the object is able to recover into its rest shape under these
conditions. Hence, we can also say that the material is consistent with
Hooke’s law in this interval.

After the straight line, we can spot a non-linear relationship before the
yielding point. The material is still able to recover, but there is a non-
linear relationship between the stresses and strains. The resulting defor-
mation is larger than how Hooke’s law would predict it. Materials that
fall into this category are called Hyperelastic Materials. Hyperelasticity
is a generalization of linear elasticity with a non-linear relationship and
is suited for larger strain predictions ([Ber15], p. 218).

1the orginial image was taken from:
https://commons.wikimedia.org/wiki/File:Stress-strain_curve.svg

Chapter 2 Background 10

UTS in Fig. 2.3 is abbreviated for ultimate tensile strength and defines
the maximal stress an object can bear before breaking. At the point of
Fracture stress the material finally tears apart.

The behaviour of the object depends heavily on the material it consists
of, and the stress-strain curve looks different for each material. We need
to choose the energy function according to the material properties. The
behaviour of human flesh can be put into the category of hyperelastic
materials. Thus, the energy function also has to be hyperelastic for our
purposes.

2.2.4 Material Constants

When we look at a deformation of an object, we need to consider the
material the object consists of. Materials can be very stiff like steel or
easily deformable like rubber. In order to measure the deformation of
a specific material, we need the Poisson’s ratio of said material. The
Poisson’s ratio is a material constant that is defined as

ν = −ε11

ε22
∈ [−1, 0.5], (2.4)

where ε11 is the lateral and ε22 the axial strain. The range in which ν lies
in starts at −1 and goes up to 0.5 ([MR09]). In order to understand this
quantity better, we can use an example: Imagine pulling a rubber band
on each of its sides. After pulling a bit, we can observe that the band gets
longer and the middle part gets narrower. The Poisson’s ratio indicates
the extent of this deformation. Some materials, such as rubber, are more
easily deformable and therefore lead to a higher Poisson’s ratio.

Usually, the Poisson’s ratio of a material is positive. A negative value
would mean that the material becomes wider in the cross-section when
we stretch it. This behaviour is very uncommon in nature. Examples
of materials with a negative Poisson’s ratio are for instance discussed in
Foam structures with a negative Poisson’s ratio ([Lak87]) or Advances in
negative Poisson’s ratio materials ([Lak93]). Table 2.1 shows examples
of positive Poisson’s ratios of various materials.

Chapter 2 Background 11

Material Poisson’s ratio
C (graphite) 0.31
Sn (metal) 0.357
Cu 0.355
Zn 0.25
Ag 0.36
Au 0.45
Concrete 0.20–0.37
Titanium (dental alloy) 0.30–0.31
Bronze 0.34
18–8 Stainless steel 0.305
Natural rubber 0.4999
B2O3 glass 0.30
GeO2 glass 0.20

Table 2.1: Different materials with their Poisson’s ratio ([MR09], p. 3)

In the context of flesh simulation, the Poisson’s ratio tells us how resistant
flesh is to volume change. The Poisson’s ratio of biological tissues such
as flesh, fat, and muscles takes on higher values in the range of 0.45 and
0.5 ([SGK18]).

The calculation of the Poisson’s ratio, as defined in Eq. (2.4), is a chal-
lenge. Fortunately, we can make use of the Lamé Parameters, the two
material-specific constants µ and λ. With the help of these two constants,
we can transform Eq. (2.4) into the form

ν = λ

2(λ + µ) . (2.5)

This equation allows us to calculate the Poisson’s ratio much easier
([Ber15], p. 231).

2.3 Mathematical Background

Now that we have established an understanding of the general concepts
of continuum mechanics, we can look at the more technical part. Since
mathematics play an important role in the field of interests, we need
to build a solid background before diving further into more technical

Chapter 2 Background 12

calculations. This section covers all the essential concepts used later in
the calculations. A basic understanding of linear algebra is assumed.

2.3.1 Singular Value Decomposition

The singular value decomposition (SVD) will play an important role while
working with the deformation gradient. It represents the best possible
approximation of a given matrix by a matrix of low rank. This approxi-
mation can be looked at as a compression of the given data ([LM15], p.
295). Firstly, we need to define what singular values are.

Definition 1 (Singular Values). The singular values of a matrix A ∈
Rm×n are the square roots of the eigenvalues of AAT.

The theorem of the singular value decomposition states that we can factor
every (m×n)-matrix into one orthogonal (m×m)-, one orthogonal (n×n)-,
and one diagonal (m× n)-matrix. More formally:

Theorem 1 (The SVD Theorem). Let A ∈ Rm×n be a matrix having
r positive singular values, m ≥ n. Then there exist orthogonal matrices
U ∈ Rm×m, V ∈ Rn×n and a diagonal matrix Σ̃ ∈ Rm×n such that

A = UΣ̃VT

Σ̃ =
 Σ 0

0 0

where Σ = diag (σ1, σ2, . . . , σr), and σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are
the positive singular values of A.

This definition and theorem were taken from Numerical linear algebra
with applications: Using MATLAB ([For14], p. 113, p. 300).

Chapter 2 Background 13

2.3.2 Polar Decomposition

Another theorem I will be using in section 2.4 is the polar decomposition
theorem:

Theorem 2 (The Polar Decomposition Theorem). Let F be a non-
singular square matrix. Then F can be decomposed uniquely into either
of the following two products

F = RU, F = VR

where R is an orthogonal matrix, and U and V are positive definite
symmetric matrices.

This theorem was taken from Continuum Mechanics, in which they in-
clude the proof for (3× 3)-matrices ([Spe80], p. 12).

2.3.3 Frobenius Norm

The Frobenius norm is a matrix norm. It allows us to measure and
compare entities in a multidimensional space.

Definition 2 (Frobenius Norm). Let A be an (m × n)-matrix in the
real or complex domain. Then the Frobenius norm is defined as

‖A‖F :=
√√√√ m∑

i=1

n∑
j=1
|aij|2.

We can further represent the norm with the trace of the matrix, in which
A∗ is the conjugate transpose of A. We can then use the SVD of A and
write the norm with respect to the singular values of A, denoted by σi:

‖A‖F =
√

trace(AA∗) =

√√√√√min{m,n}∑
i=1

σ2
i (2.6)

Chapter 2 Background 14

2.4 Deformation Gradient

Now that we understand the necessary mathematical background, we can
factorize the deformation gradient F and use it to calculate other useful
quantities. This section describes these factorizations and calculations
by using the theorems introduced in the previous section.

2.4.1 Singular Value Decomposition of F

Using the SVD theorem shown in Thm. 1, F can be written in the form
of

F = UΣVT (2.7)

in which Σ is defined as

Σ =

σ0 0 0
0 σ1 0
0 0 σ2

 . (2.8)

Each σi denotes a singular value of F. U and V are both orthogonal
matrices that represent the rotation of F. Σ, on the other hand, indicates
the scaling of each coordinate xi by the factor σi. By using the standard
convention, we would choose only nonnegative entries for Σ. Unfortu-
nately, this approach only works well for det(F) ≥ 0 ([ITF04], p. 134).
Hence, when working with inverted material, we might run into problems.
The authors of the paper SNH-FS decided to move the reflections to Σ.
Therefore, Σ is allowed to have a negative entry. This has the effect that
det(U) and det(V) are both equal to 1.

2.4.2 Polar Decomposition of F

With the help of Thm. 2 we can decompose the deformation gradient
into the form

F = RS, (2.9)

Chapter 2 Background 15

where R is orthogonal and S is a positive definite symmetric matrix. R
symbolises the rotation that F undergoes, whereas S contains the scaling
along the orthogonal directions of F.

2.4.3 Relative Volume Change

A piece of useful information about a deformation is the relative volume
change of the deformed object. It can be calculated by the determinant
of F:

J = det(F) (2.10)

For a normal deformation, J is a positive value. A determinant of zero
would mean that we deform the object into a zero volume state, e.g. a
plane or point. A negative determinant indicates an inversion.

2.4.4 Cauchy-Green

In chapter 3, I will also use the right Cauchy-Green tensor C. It can be
calculated by

C = FTF. (2.11)

C is a (3 × 3)-matrix for deformations in the 3D domain. Using C, we
can calculate the first right Cauchy-Green invariant IC with

IC = tr(C). (2.12)

Invariants of the Cauchy-Green tensor are often used in formulations of
the strain energy density.

Chapter 3

Stable Neo-Hookean Flesh
Simulation

In this chapter, I will examine further the topic of the paper SNH-FS,
in particular, the calculations and conclusions made by the authors. I
will go through each step they did, and my goal is to fill in some gaps to
help in understanding the thought process. For this, I will include some
of their calculations in more detail and add additional explanations. I
would like to note that the information provided in this chapter is taken
from the paper SNH-FS if not stated otherwise. For simplification, I will
not include a reference in each paragraph.

The structure of this chapter is similar to the one of the paper: At
first, I will go through the process of the formulation of the Stable Neo-
Hookean energy. This includes pointing out the requirements and looking
at existing energies. Finally, I will show that a complete eigenanalysis
can be performed on the constructed energy.

3.1 Deformation Gradient

In the following, I will use the definitions involving the deformation
gradient F introduced in chapter 2. These definitions are summarized in
Table 3.1 for a better overview.

Chapter 3 Stable Neo-Hookean Flesh Simulation 17

Symbol Definition
F = RS Polar decomposition
J = det(F) Relative volume change
C = FTF Right Cauchy-Green tensor
IC = tr(C) First right Cauchy-Green invariant

Table 3.1: Quantities derived from the deformation gradient

3.2 Energy Formulation

In this section, I will go through the process of formulating a new de-
formation energy. At first, I will explain what properties a deformation
energy should have. Secondly, I will analyse existing energies. Finally,
I will go through the formulation of the novel energy from the paper
SNH-FS.

3.2.1 Stability

The core goal of the paper was to model deformations for virtual char-
acters that have human-like features. In order to achieve better results
than what has been done in current research, they formulated a new de-
formation energy. In chapter 2, I concluded that the appropriate energy
for animating soft tissues such as flesh has to be hyperelastic. Another
important property is the stability of the energy. We need a hyperelastic
energy that is stable in the following four ways, which were introduced
in the paper itself:

1. Inversion Stability: Given some arbitrary object, it is possible that
while deforming the object, we can arrive at a zero volume state or even
an entire inversion. For example, we can look at the tetrahedron shown
in Fig. 3.1a. In Fig. 3.1b, we see a deformed state of this tetrahedron
where the volume is scaled down to zero, and we are left with a simple
triangle. In Fig. 3.1c, the tetrahedron arrives at an inverted state. The
deformation energy has to be able to deal with both cases without creating
severe artefacts. That means that the energy has to be singularity-free,
meaning that it is defined for every possible point. This property should
ideally hold without needing any filters or threshold.

Chapter 3 Stable Neo-Hookean Flesh Simulation 18

(a) Rest state (b) Zero-volume state (c) Inverted state

Figure 3.1: Inversion of a tetrahedron

2. Reflection stability: While deforming an object, it can occur that
we are dealing with reflections. An example of a reflection in 2D is shown
in Fig. 3.2. The coloured triangle is reflected over the y-axis. A matrix
that represents a reflection is orthogonal with a determinant equal to −1.
The deformation energy needs to be well behaved under reflections. This
has to hold, regardless of the reflection convention used in the SVD of
F. The reflection convention is explained in chapter 2 in subsection 2.4.1.

Figure 3.2: Reflection of a triangle over the y-axis

3. Rest stability: While deforming an object in a certain way, we apply
one or multiple forces to that object, which influences the deformation.
But if we remove all the forces, the object should be able to go back into
its rest state. This ability was introduced in chapter 2 as elasticity.

4. Meta-stability under degeneracy: Here we are dealing with a
special case of deformation. If we crush a volumetric object into a plane,
line, or point, we change the object into a degenerate case. This process
is illustrated for a cube in Fig. 3.3. Even with these extreme conditions,

Chapter 3 Stable Neo-Hookean Flesh Simulation 19

the object should still be able to recover into its actual shape and not
some other.

Figure 3.3: Illustration of degeneracy

Based on these four requirements, I will judge the existing models for the
deformation energy. These criteria determine whether a proposed energy
is suited for simulating the fleshy look or not.

3.2.2 Existing Neo-Hookean Energies

In previous literature, a few energies were proposed, which I will analyse
in this section. They are listed in Table 3.2. All of these energies were
formulated for hyperelastic materials.

Energy Author(s)

ΨNeo = µ
2 (IC − 3)− µ log J + λ

2 (log J)2 e.g. Bonet and Wood 1997
([BW97])

ΨA = µ
2 (IC − 3)− µ log J + λ

2 (J − 1)2 Odgen 1997 ([Ogd97])
ΨB = µ

2

(
J−2/3IC − 3

)
+ λ

2 (J − 1)2 Bower 2009 ([Bow09])

ΨC = µ
2

(
J−2/3IC − 3

)
+ λ

2 (J − 1)
Wang and Yang 2016
([WY16])

Table 3.2: Summary of proposed energies ([SGK18])

According to the Valanis-Landel hypothesis, many hyperelastic energies
can be split up into a 1D length, 2D area, and 3D volume term. The
energies in Table 3.2 only contain the length and volume term. Hence,
each of these energies can be separated into a 1D length term and a 3D
volume term. The 1D length term penalizes the length changes an object

Chapter 3 Stable Neo-Hookean Flesh Simulation 20

undergoes during a deformation, whereas the 3D volume term penalizes
the change in volume of the object.

Energy 1D length term 3D volume term
ΨNeo

µ
2 (IC − 3) −µ log J + λ

2 (log J)2

ΨA
µ
2 (IC − 3) −µ log J + λ

2 (J − 1)2

ΨB
µ
2

(
J−2/3IC − 3

)
λ
2 (J − 1)2

ΨC
µ
2

(
J−2/3IC − 3

)
λ
2 (J − 1)

Table 3.3: Energies split up into their 1D length and 3D volume term

1D Length Term

The term that is used for ΨNeo and ΨA is defined as

ΨM = µ

2 (IC − 3) .

This energy was originally proposed by Mooney in 1940 ([Moo40]). It is
today known as the Neo-Hookean energy because of Rivlin ([Riv48]). If
we expand the term with the singular values of the deformation gradient
F, we get the following equation:

ΨM = µ

2
(
σ2

0 + σ2
1 + σ2

2 − 3
)

The term reaches its minimum at a zero volume state, meaning at IC = 0,
which leads to ΨM = −3. Because this is not desirable, Mooney added
the hard constraint that J should be equal to 1. Hence, the energy is
minimized at a volume-preserving configuration. Note that the energy is
singularity free and well defined under inversion.

The second term is defined by

ΨR = µ

2
(
J−2/3IC − 3

)
.

It is used in ΨB and ΨC . This term was introduced by Rivlin in 1948
([Riv48]). Using the singular values of F, we get the following expres-
sion:

ΨR = µ

2

(
σ2

0 + σ2
1 + σ2

2

(σ0σ1σ2)
2
3
− 3

)

Chapter 3 Stable Neo-Hookean Flesh Simulation 21

Unfortunately, this term is not singularity free. If J is equal to zero, the
result is not defined anymore.

3D Volume Term

The volume term of ΨNeo is described as

ΨNeo,volume = −µ log J + λ

2 (log J)2

and results in numerical problems since the logarithmic function is not
defined for J < 0 and grows unbounded for J → 0. In conclusion,
ΨNeo,volume is not singularity free. The same applies to the 3D volume
term of ΨA, namely

ΨA,volume = −µ log J + λ

2 (J − 1)2.

The volume term of ΨB and ΨC is of the form

ΨB,volume = λ

2 (J − 1)2

and does not have these problems. It is bounded, well defined, and
invertible. After these observations, the authors of SNH-FS combined
the robust length term with the robust volume term and received ΨD,
which is defined as

ΨD = µ

2 (IC − 3) + λ

2 (J − 1)2.

ΨD is singularity free and well defined under inversion. Unfortunately, it
does not satisfy the requirement of being rest stable, which I will discuss
in the next section.

In addition, we can see that each of the proposed energies contains a term
that is not well defined under certain conditions. That means that each
of the energies in Table 3.2 is not singularity free or well defined under
inversion and therefore confirms the need for the formulation of a new
energy.

Chapter 3 Stable Neo-Hookean Flesh Simulation 22

3.2.3 Rest Stabilization

Although ΨD meets almost all stated requirements, it is not rest stable.
We can show that with the first Piola-Kirchhoff stress tensor (PK1). For
our case, it is defined as

P (F) = ∂Ψ
∂F

(F). (3.1)

With the help of Eq. (3.1) we can calculate the PK1 of ΨD. For the
following calculations, keep in mind that IC = tr(FTF) and J = det(F)
holds with F being the deformation gradient. I will use the explicit terms
during the calculations for a better understanding.

PD(F) = ∂ΨD

∂F
(F) = ∂

∂F

[
µ

2 (IC − 3) + λ

2 (J − 1)2
]

= ∂

∂F

[
µ

2
(
tr(FTF)− 3

)
+ λ

2 (det(F)− 1)2
]

= ∂

∂F
µ

2
(
tr(FTF)− 3

)
+ ∂

∂F
λ

2 (det(F)− 1)2

Looking at the two terms separately, we get:

∂

∂F
µ

2 (tr(FTF)− 3) = µ

2 2F = µF

∂

∂F
λ

2 (det(F)− 1)2 = λ

2
∂ det(F)

∂F
2(det(F)− 1) = λ

∂ det(F)
∂F

(det(F)− 1)

Hence, PD resolves to

PD(F) = µF + λ
∂ det(F)

∂F
(det(F)− 1).

In order to find out whether an energy is rest stable or not, we can set
the input variable to the identity matrix I. An energy is rest stable if
P (I) = 0 ([SGK18]). Unfortunately, this is not the case for ΨD:

PD(I) = µI + λ
∂ det(I)

∂F
(det(I)− 1) = µI 6= 0

That is problematic because if we simulate a deformation, the object will
shrink in volume when it should be back in its rest state. In order to
solve this problem, the authors modified (J − 1)2 to (J − α)2. Using this

Chapter 3 Stable Neo-Hookean Flesh Simulation 23

modification, the energy shifts to

ΨE = µ

2 (IC − 3) + λ

2 (J − α)2.

Now PK1 for ΨE can be calculated similarly as before, and we get:

PE(F) = ∂ΨE

∂F
= ∂

∂F

[
µ

2 (IC − 3) + λ

2 (J − α)2
]

= ∂

∂F

[
µ

2
(
tr(FTF)− 3

)
+ λ

2 (det(F)− α)2
]

= µF + λ
∂ det(F)

∂F
(det(F)− α)

Solving for an alpha that satisfies PE(I) = 0 gives us α = 1 + µ
λ
. Now ΨE

has to be changed accordingly:

ΨE = µ

2 (IC − 3) + λ

2 (J − 1− µ

λ
)2

We can now expand the quadratic and obtain

ΨE = µ

2 (IC − 3)− µ (J − 1) + λ

2 (J − 1)2 +
(

µ

λ

)2
.

Since constants disappear under differentiation, this expression is func-
tionally equivalent to

ΨE = µ

2 (IC − 3)− µ (J − 1) + λ

2 (J − 1)2. (3.2)

Note that ΨE looks very similar to ΨNeo. The difference is that log(J) is
replaced with (J − 1) in ΨE. Keep in mind that (J − 1) is the first term
of the Taylor approximation of log(J) at J = 1:

log(J) = (J − 1)− 1
2(J − 1)2 + 1

3(J − 1)3 + ...

Thus, ΨE can be looked at as an approximation of ΨNeo that is singularity-
free and has rest stability. In addition, it has reflection stability because
IC contains the squared singular values of F. Hence, any negation con-
vention is irrelevant, and the J term contains the product of the singular
values, so the sign convention is again irrelevant. Therefore, ΨE has
inversion, reflection, and rest stability.

Chapter 3 Stable Neo-Hookean Flesh Simulation 24

3.2.4 Meta-Stability under Degeneracy

We know from the last section that the energy ΨE has inversion, reflec-
tion, and rest stability. Now we are interested in how it behaves under
degeneracy. The authors of the paper SNH-FS viewed this examina-
tion as a Drucker stability analysis (see e.g. [Bow09]). Drucker stability
describes a set of criteria that a material can satisfy or not. It is a mea-
surement of the stability of a material. The calculations can be found
in the supplemental material of SNH-FS. I will only present the results
here.

The energy remains stable when crushing the object into a plane. The
object is able to return to its rest state. Thus, no further adjustments
need to be done. When crushing the object into a line, the energy is
meta-stable. The object will self-restore into the correct shape after
any perturbations. A possible perturbation could be a momentum. The
alternative would be a state that yields singularities, which is not desirable.
Hence, we can leave the energy as it is. We can also crush the object
to a point, which results in F = 0. In this case, the material cannot
recover into its rest state. This effect is small for a higher Poisson’s ratio.
For completeness, the authors nevertheless added a regularized origin
barrier:

Ψorigin = −µ

2 log(IC + δ)

This term eliminates the unwanted behaviour for point compression for all
positive Poisson’s ratio, without interfering with the other requirements
for the energy. It can be shown that the value of δ should be set to 1.
This proof is also included in the supplemental material of the paper.

We can now write the final energy down as

Ψnew = µ

2 (IC − 3) + λ

2 (J − α)2 − µ

2 log (IC + 1) . (3.3)

With this adjustment the rest stability term shifts to α = 1+ µ
λ
−
(

µ
4

)
λ.

To note here is that the authors mainly introduced this origin barrier
because of pedagogical completeness. In practice, the origin barrier was

Chapter 3 Stable Neo-Hookean Flesh Simulation 25

not needed, and the version of the energy without it, formulated in Eq.
(3.2), was used.

3.2.5 Lamé Reparameterization

Because of the origin barrier introduced in the last section, we need to
make a reparametrization of the Lamé parameters λ and µ. As I explained
in subsection 2.2.3, there is a non-linear relationship between the stresses
and strains for hyperelastic materials for larger strain predictions. But
for infinitesimal deformation, we should still be consistent with Hooke’s
law. In order to reach this goal, the model needs to reproduce the PK1
of linear elasticity, which is defined as

P(F) = 2µLaméε + λLamé tr(ε)I, (3.4)

where ε = 1
2(F + FT) − I is the linearized strain tensor and µLamé and

λLamé are the Lamé parameters in linear elasticity. If we linearize the
stress from Eq. (3.3) and keep it consistent with the form described in
Eq. (3.4), the values shift to µ = 4

3µLamé and λ = λLamé + 5
6µLamé . The

equation for the Poisson’s ratio then shifts to

ν =
λ−

(
5
8

)
µ

2
(
λ +

(
1
8

)
µ
) .

These reparameterized expressions for the Lamé parameters were used
in all of the tests made in the paper SNH-FS. In addition, with these
formulations, it can be shown that the energy does not introduce any
spurious minima in the range of ν ∈ [0, 0.5). The details are again given
in the supplemental material of the paper SNH-FS.

3.3 Energy Analysis

In order to simulate physical deformations, we put some constraints
on an object and minimize the deformation energy. Thus, we need a
minimization tool. In this case, we will use Newton’s method. I will
further explain Newton’s method in section 4.4. But first, we need to

Chapter 3 Stable Neo-Hookean Flesh Simulation 26

know more about the properties of the energy. The goal of this chapter
is to show that a complete eigenanalysis can be performed on the new
energy, formulated in Eq. (3.3), which will help us form a qualitative
understanding of the energy.

3.3.1 First Piola-Kirchhoff Stress (PK1)

In order to analyse the energy and build the Hessian terms, the first step
is to calculate PK1 for Eq. (3.3) with α = 1 + µ

λ
−
(

µ
4

)
λ. Again, IC is

equal to tr(FTF), J signifies det(F), and I am using the explicit terms
during the calculations. With this, we can calculate Pnew by

Pnew(F) = ∂Ψnew

∂F
= ∂

∂F

[
µ

2 (IC − 3) + λ

2 (J − α)2 − µ

2 log (IC + 1)
]

= ∂

∂F

[
µ

2
(
tr(FTF)− 3

)
+ λ

2 (det(F)− α)2 − µ

2 log
(
tr(FTF) + 1

)]
.

Similar to before, I am looking at the terms separately:

∂

∂F
µ

2
(
tr(FTF)− 3

)
= µF

∂

∂F
λ

2 (det(F)− α)2 = λ(det(F)− α)∂ det(F)
∂F

∂

∂F
µ

2 log
(
tr(FTF) + 1

)
= µ

2 2F
1

tr(FTF) + 1 = µF
1

tr(FTF) + 1

When we combine these terms again, we get to the final formula of Pnew:

Pnew(F) = µF + λ(det(F)− α)∂ det(F)
∂F

− µF
1

tr(FTF) + 1

= µ

(
1− 1

tr(FTF) + 1

)
F + λ(det(F)− α)∂ det(F)

∂F

By using IC and J , we get the following expression for Pnew(F):

Pnew(F) = µ
(

1− 1
IC + 1

)
F + λ(J − α)∂J

∂F

Chapter 3 Stable Neo-Hookean Flesh Simulation 27

A convenient shorthand for computing ∂J
∂F is to write the expression as a

result of cross products:

∂J

∂F
=
[

f1 × f2

∣∣∣∣∣ f2 × f0

∣∣∣∣∣ f0 × f1

]
, (3.5)

where fi signify the column vectors of F defined in Eq. (2.3). This
formulation is also handy when analysing ∂2J

∂F2 .

3.3.2 The Energy Hessian Terms

In the following, I will derive the Hessian terms of the energy. In addition,
I will examine the eigenvalues and eigenvectors. This information about
the Hessian is important for the optimization process because, with it,
we can determine the definiteness of the matrix.

The Hessian matrix will be a (9 × 9)-matrix. It is demanding to keep
an overview while working with high dimensional matrices. In order
to not lose sight, we can write the Hessian of the energy as a fourth-
order matrix-of-matrices by using the scalar notation for F defined in Eq.
(2.3):

∂2Ψnew

∂F2 = ∂Pnew(F)
∂F

=

[

∂Pnew(F)
∂f0

] [
∂Pnew(F)

∂f3

] [
∂Pnew(F)

∂f6

]
[

∂Pnew(F)
∂f1

] [
∂Pnew(F)

∂f4

] [
∂Pnew(F)

∂f7

]
[

∂Pnew(F)
∂f2

] [
∂Pnew(F)

∂f5

] [
∂Pnew(F)

∂f8

]

The advantage of this form is that we can look at each entry separately,
which improves readability. Each entry of the Hessian is defined as

∂Pnew(F)
∂fi

= ∂

∂fi

[
µ
(

1− 1
IC + 1

)
F + λ(J − α)∂J

∂F

]

prod.rule= ∂F
∂fi

µ
(

1− 1
IC + 1

)
︸ ︷︷ ︸

Ti

+ µ
2

(IC + 1)2 Ffi︸ ︷︷ ︸
Mi

(3.6)

+ λ
∂J

∂F
∂J

∂fi︸ ︷︷ ︸
Gi

+ λ(J − α) ∂2J

∂F∂fi︸ ︷︷ ︸
Hi

.

Chapter 3 Stable Neo-Hookean Flesh Simulation 28

This final equation looks quite complicated. But we can split it up into
these four terms: A Ti (Tikhonov), Mi (Mu), Gi (volume Gradient),
and a Hi (volume Hessian) term. In the following, I will examine each of
these terms separately. This way, we do not have to deal with one large
and complicated expression immediately.

3.3.3 The Tikhonov, Mu, and Gradient Terms

Tikhonov

The Tikhonov term from Eq. (3.6) is a (9× 9)-matrix and can be written
in form of a fourth-order matrix-of-matrices. It is defined as

∂F
∂fi

µ
(

1− 1
IC + 1

)
.

With the explicit term for IC , this expression resolves to

∂F
∂fi

µ

(
1− 1

tr(FTF) + 1

)
.

Explicitly computing the Tikhonov term is not very difficult. In order
to compute this term, we need to calculate T = ∂F

∂fi
. So, we have mainly

entries of zeros except for the i-th entry. Therefore, T can be calculated
by

T =

1 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 0 0

1 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 0 0

1 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 1

.

Chapter 3 Stable Neo-Hookean Flesh Simulation 29

If we vectorize T, we get the identity matrix I ∈ R9x9, which is of full
rank, positive definite, and independent of the values in F:

vec(T) = Ť = I =∈ R9x9

In addition, the Tikhonov term serves as a diagonal regularizer for the
rest of the energy.

Mu

The Mu term from Eq. (3.6) is again a (9× 9)-matrix and can be written
in the form of a fourth-order matrix-of-matrices. It is described by the
following expression:

µ
2

(IC + 1)2 Ffi

With the explicit term for IC , the Mu term resolves to

µ
2

(tr(FTF + 1)2 Ffi.

In order to compute the Mu term, we need to calculate M = Ffi. That
means that the i-entry is squared, and the remaining entries do not
change. Therefore, M takes on the following form:

M =

f 2

0 f0f3 f0f6

f0f1 f0f4 f0f7

f0f2 f0f5 f0f8

f3f0 f 2

3 f3f6

f3f1 f3f4 f3f7

f3f2 f3f5 f3f8

f6f0 f6f3 f 2

6

f6f1 f6f4 f6f7

f6f2 f6f5 f6f8

f1f0 f1f3 f1f6

f 2
1 f1f4 f1f7

f1f2 f1f5 f1f8

f4f0 f4f3 f4f6

f4f1 f 2
4 f4f7

f4f2 f4f5 f4f8

f7f0 f7f3 f7f6

f7f1 f7f4 f 2
7

f7f2 f7f5 f7f8

f2f0 f2f3 f2f6

f2f1 f2f4 f2f7

f 2
2 f2f5 f2f8

f5f0 f5f3 f5f6

f5f1 f5f4 f5f7

f5f2 f 2
5 f5f8

f8f0 f8f3 f8f6

f8f1 f8f4 f8f7

f8f2 f8f5 f 2
8

Chapter 3 Stable Neo-Hookean Flesh Simulation 30

Again, fi stand for the scalar entries of F. When vectorizing M, the
diagonal of the resulting matrix M̌ consists of the squared values of fi:

vec(M) = M̌ =

f 2
0 f1f0 f2f0 f3f0 f4f0 f5f0 f6f0 f7f0 f8f0

f0f1 f 2
1 f2f1 f3f1 f4f1 f5f1 f6f1 f7f1 f8f1

f0f2 f1f2 f 2
2 f3f2 f4f2 f5f2 f6f2 f7f2 f8f2

f0f3 f1f3 f2f3 f 2
3 f4f3 f5f3 f6f3 f7f3 f8f3

f0f4 f1f4 f2f4 f3f4 f 2
4 f5f4 f6f4 f7f4 f8f4

f0f5 f1f5 f2f5 f3f5 f4f5 f 2
5 f6f5 f7f5 f8f5

f0f6 f1f6 f2f6 f3f6 f4f6 f5f6 f 2
6 f7f6 f8f6

f0f7 f1f7 f2f7 f3f7 f4f7 f5f7 f6f7 f 2
7 f8f7

f0f8 f1f8 f2f8 f3f8 f4f8 f5f8 f6f8 f7f8 f 2
8

This structure makes it possible to express M̌ more conveniently. We can
write M̌ as an outer product of vec(F) = f̌ :

M̌ = vec(F) vec(F)T = f̌ f̌T

This matrix is of rank one and has a single non-zero eigenvalue. In order
to examine the eigenvalues, we can calculate

‖f̌‖2
2 =

8∑
n=0
|fn|2 = ‖F‖2

F =
3∑

n=0
σ2

i =
(
σ2

0 + σ2
1 + σ2

2

)
,

in which ‖·‖F stands for the Frobenius norm introduced in Def. 2, and σi

are the singular values from Σ in the SVD of F stated in Eq. (2.8). This
expression can be obtained by using Eq. (2.6). The eigenvector of M̌ is
f̌/‖f̌‖. The eigenvalue is always non-negative and large if F contains a
large stretch.

Volume Gradient

The volume Gradient term from Eq. (3.6) is also a (9 × 9)-matrix and
can be written in the form of a fourth-order matrix-of-matrices. The

Chapter 3 Stable Neo-Hookean Flesh Simulation 31

Gradient term is defined as

λ
∂J

∂F
∂J

∂fi

,

with J = det(F). Since λ is just a scalar constant, we are more interested
in the term

G = ∂J

∂F
∂J

∂fi
.

As already mentioned, we can write ∂J/∂F in the form of cross prod-
ucts (see Eq. (3.5)) to make its computation easier. We can then set
vec(∂J/∂F) = ǧ and write the vectorized matrix Ǧ as an outer product
of ǧ:

vec(G)) = Ǧ = vec
(

∂J

∂F

)
vec

(
∂J

∂F

)T

= ǧǧT

There is again a single non-zero, non-negative eigenvalue. We can calcu-
late it by

‖ǧ‖2
2 =

∥∥∥∥∥∂J

∂F

∥∥∥∥∥
2

F

=
[
(σ0σ1)2 + (σ0σ2)2 + (σ1σ2)2

]
.

The corresponding eigenvector is ǧ/‖ǧ‖.

3.3.4 The Volume Hessian

The volume Hessian term from Eq. (3.6) is again a (9× 9)-matrix. But
this time, the computation is a bit trickier. The term is described by

λ(J − α) ∂2J

∂F∂fi

with J = det(F). The term that needs special attention is the following:

H = ∂2J

∂F∂fi

Chapter 3 Stable Neo-Hookean Flesh Simulation 32

We can write this term again in the form of a fourth-order matrix-of-
matrices:

H = ∂2J

∂F∂fi

=

∂

∂F

[
∂J
∂f0

]
∂

∂F

[
∂J
∂f3

]
∂

∂F

[
∂J
∂f6

]
∂

∂F

[
∂J
∂f1

]
∂

∂F

[
∂J
∂f4

]
∂

∂F

[
∂J
∂f7

]
∂

∂F

[
∂J
∂f2

]
∂

∂F

[
∂J
∂f5

]
∂

∂F

[
∂J
∂f8

]

The entries of H have a specific form. For example, the first entry resolves
to

∂

∂F

[
∂J

∂f0

]
= ∂

∂F
∂

∂f0
[f0f4f8 + f2f3f7 + f1f5f6 − f2f4f6 − f0f5f7 − f1f3f8]

= ∂

∂F
[f4f8 − f5f7] =

0 0 0

0 f8 −f5

0 −f7 f4

 .

Vectorizing this matrix reveals the vector [0, 0, 0, 0, f8,−f7, 0,−f5, f4]T.

By repeating this procedure, Ȟ reveals the structure

vec(H) = Ȟ =

0 0 0 0 f8 −f7 0 −f5 f4

0 0 0 −f8 0 f6 f5 0 −f3

0 0 0 f7 −f6 0 −f4 f3 0

0 −f8 f7 0 0 0 0 f2 −f1

f8 0 −f6 0 0 0 −f2 0 f0

−f7 f6 0 0 0 0 f1 −f0 0

0 f5 −f4 0 −f2 f1 0 0 0

−f5 0 f3 f2 0 −f0 0 0 0

f4 −f3 0 −f1 f0 0 0 0 0

.

When we look at the matrix, we can see a pattern for the entries. Ȟ is

Chapter 3 Stable Neo-Hookean Flesh Simulation 33

of the form:

Ȟ =

0 −F̂2 F̂1

F̂2 0 −F̂0

−F̂1 F̂0 0

 .

Matrices that have this structure are called cross-product matrices. By
looking at the entries separately, we can observe that they reveal the
same structure. So, each F̂i is also a cross-product matrix. This prop-
erty is called self-similarity. Therefore, Ȟ is a self-similar cross-product
matrix.

Volume Hessian Eigenvalues

In the following, I will determine the eigenvalues of Ȟ. In order to calcu-
late the eigenvalues of a matrix, we need the corresponding characteristic
polynomial. The characteristic polynomial of a square matrix A is defined
by

p(ε) = det(A− ε I),

where ε symbolizes the eigenvalues of A. The eigenvalues can be cal-
culated by setting p(ε) to zero ([Spe80], p. 27-28). Because Ȟ is a
(9 × 9)-matrix, we expect it to have nine eigenvalues: ε0, ε2, ..., ε8. In
order to determine the eigenvalues, we can factor Ȟ into the following
two characteristic polynomials:

p1(ε) = ε3 − tr(C)ε− 2J (3.7)

p2(ε) = ε3 − tr(C)ε2 + 1
2
(
tr2(C)− tr(C2)

)
ε− det(C) (3.8)

First, I examine p2(ε) from Eq. (3.8). It is easier to solve because it
corresponds to the characteristic polynomial of C. Given its roots εα, εβ,
εγ, we can calculate six of the eigenvalues of Ȟ, namely ±√εα, ±√εβ,
±√εγ. Using the singular values of F, these eigenvalues can be written

Chapter 3 Stable Neo-Hookean Flesh Simulation 34

in the following form:

ε3 = √εα = σ0 ε6 = −√εα = −σ0

ε4 = √εβ = σ1 ε7 = −√εβ = −σ1 (3.9)
ε5 = √εγ = σ2 ε8 = −√εγ = −σ2

The remaining eigenvalues can be obtained by using p1(ε) from Eq. (3.7).
This equation represents a depressed cube. A depressed cube is a cubic
that can be expressed by

t3 + q1t + q2.

p1(ε) can be written in this form with q1 = − tr(C) and q2 = −2J . Using
this knowledge, the roots of p1(ε) and therefore the remaining eigenvalues
ε0, ε1, ε2 of Ȟ can be obtained by

εk = 2
√

IC

3 cos
[

1
3

(
arccos

(
3J

IC

√
3
IC

)
+ 2πk

)]
k = 0, 1, 2. (3.10)

These are all eigenvalues of Ȟ. Three of the six eigenvalues (ε3, ..., ε8) have
to be negative or equal to zero since the root function yields a positive
and a negative value. In addition, the cosine function for calculating ε0,
ε1, and ε2 ensures that one or two of these eigenvalues are also negative.

We have now found the eigenvalues of the terms of ∂2Ψnew

∂F2 , described in
Eq. (3.6). We found out that except for the volume Hessian term, all
terms only have non-negative eigenvalues. Thus, the volume Hessian is
the only source of negative eigenvalues.

In order to investigate the behaviour of the volume Hessian term further,
we need to look at J = det(F) a bit more in detail. J is not convex,
which is problematic for the optimization process. Fortunately, the other
terms of ∂2Ψnew

∂F2 serve as an additional regularization, as already stated
for the Tikhonov term.

Volume Hessian Eigenvectors

In this section, I will show the eigenvectors of Ȟ. According to the
eigendecomposition, Ȟ can be factorized as Ȟ = Q̌ΛQ̌T. We can obtain

Chapter 3 Stable Neo-Hookean Flesh Simulation 35

the eigenvectors by computing Q̌. To be consistent with the procedure
so far, I will use the tensor form symbolized by Q:

Q =

[Q0] [Q3] [Q6]

[Q1] [Q4] [Q7]

[Q2] [Q5] [Q8]

Each entry of Q̌ is an eigenvector in the form of a (3× 3)-matrix instead
of a vector with nine entries. I am starting with the eigenvalues obtained
by Eq. (3.8), namely ε3, ε4, ..., ε8. The eigenvectors corresponding to
these eigenvalues can all be written in the following form:

Qk = 1√
2

UDkVT for k = 3, 4, ..., 8 (3.11)

U and V are taken from the SVD of F, and 1√
2 is a normalization

factor. The difference of the eigenvectors lies in the matrix Dk. For each
eigenvalue εk for k ∈ 3, 4, ..., 8, Dk is defined as:

D3 =

0 0 0

0 0 1

0 −1 0

 D6 =

0 0 0

0 0 1

0 1 0

D4 =

0 0 1

0 0 0

−1 0 0

 D7 =

0 0 1

0 0 0

1 0 0

D5 =

0 1 0

−1 0 0

0 0 0

 D8 =

0 1 0

1 0 0

0 0 0

These eigenvectors have a unique pseudo-cross-product structure. D3 is
a cross-product matrix for the basis vector [−1, 0, 0]T. In addition, Q6

differs from Q3 only because of one sign. Therefore, D3 has been multi-
plied by a reflection, which makes Q6 a reflected pseudo-cross-product
matrix. Q4 and Q5 are in the same way cross-product matrices for the

Chapter 3 Stable Neo-Hookean Flesh Simulation 36

basis vectors [0,−1, 0]T and [0, 0,−1]T. Q7 and Q8 are the corresponding
reflected pseudo-cross-product matrices.

The remaining eigenvectors correspond to the eigenvalues ε0, ε1, and ε2

derived from the depressed cubic. They are of the form

Qk = 1
‖Dk‖F

UDkVT for k = 0, 1, 2.

U and V are again taken from the SVD of F, and 1
‖Dk‖F

is the normal-
ization factor. Dk is a diagonal matrix and is defined as

Dk =

σ0σ2 + σ1εk 0 0

0 σ1σ2 + σ0εk 0

0 0 ε2
k − σ2

2

 for k = 0, 1, 2.

Now we have found explicit expressions for all eigenvalues and eigenvec-
tors of the volume Hessian term.

3.3.5 The Complete Eigensystem

Now it is time to analyse the complete system, which will be called Ǎ in
the following. From Eq. (3.6), we know that Ǎ is defined as

Ǎ = µ
(

1− 1
IC + 1

)
∂F
∂fi

+ µ
2

(IC + 1)2 Ffi + λ
∂J

∂F
∂J

∂fi

+ λ(J − α) ∂2J

∂F∂fi

.

With the expressions for each individual term that were derived in the
last section, we can write Ǎ as

Ǎ = µ
(

1− 1
IC + 1

)
I + µ

2
(IC + 1)2 f̌ f̌

T + λǧǧT + λ(J − α)Ȟ.

Computing the eigenvalues from a sum of matrices is nontrivial. Fortu-
nately, Ǎ has a special structure that can be used to obtain the expres-
sions for the eigenvalues and eigenvectors. We can use the knowledge
of the eigenvalues and eigenvectors of the individual terms that we have
gathered before. For simplification, I do not include the calculations here
and present only the results. The core goal of this section is to show that

Chapter 3 Stable Neo-Hookean Flesh Simulation 37

we can compute the eigenvalues and eigenvectors relatively simple. For
further information about the exact steps, an interested reader can have
a look at the paper SNH-FS on p. 12:7 and 12:8.

For the final eigenvalues, we can use the regularization term µT = µ(1−
1

IC+1). The first three eigenvalues can be calculated by

εk = λ(J − α)ε̄k + µT for k = 0, 1, 2.

In this expression, ε̄k are the roots of the equation

ε̄3 + c2ε̄
2 + c1ε̄ + c0 = 0.

The variables c0, c1, and c2 are defined as

c2 = −‖ǧ‖2
2ρ− ICη

c1 = −(1 + 2Jρ)IC − 6Jη +
(
‖ǧ‖2

2IC − 9J2
)

ρη

c0 = −(2 + 3Jρ)J +
(
I2

C − 4‖ǧ‖2
2

)
η + 2J

(
I2

C − 3‖ǧ‖2
2

)
ρη

with

η = 2µ

(IC + 1)2
(
λ(J − 1)− 3

4µ
) , ρ = λ

λ(J − 1)− 3
4µ

.

The remaining eigenvalues can be obtained by:

ε3 = λ(J − α)σ0 + µT ε6 = −λ(J − α)σ0 + µT

ε4 = λ(J − α)σ1 + µT ε7 = −λ(J − α)σ1 + µT

ε5 = λ(J − α)σ2 + µT ε8 = −λ(J − α)σ2 + µT

These are all eigenvalues of this system. We can now focus on the eigen-
vectors. The eigenvectors corresponding to ε0, ε1, and ε2 can be calculated
by

Qk = 1
‖Dk‖F

UDkVT for k = 0, 1, 2.

We have already seen this structure for the calculation of the eigenvectors

Chapter 3 Stable Neo-Hookean Flesh Simulation 38

of the volume Hessian term. But this time, Dk is defined differently:

Dk =

α0 0 0

0 α1 0

0 0 α2

 for k = 0, 1, 2.

The diagonal entries of Dk are the following:

α0 = ε̄k (σ1 + σ0σ2η + Jσ1ρ)
+ σ0σ2 + σ1

(
σ2

0 − σ2
1 + σ2

2

)
η + Jσ0σ2ρ

+ σ0
(
σ2

0 − σ2
1

)
σ2
(
σ2

1 − σ2
2

)
ρ η

α1 = ε̄k (σ0 + σ1σ2η + Jσ0ρ)
+ σ1σ2 − σ0

(
σ2

0 − σ2
1 − σ2

2

)
η + Jσ1σ2ρ

− σ1
(
σ2

0 − σ2
1

)
σ2
(
σ2

0 − σ2
2

)
ρ η

α2 = ε̄2
k − ε̄k

(
σ2

0 + σ2
1

) (
η + σ2

2ρ
)

− σ2
2 − 2Jη − 2Jσ2

2ρ +
((

σ2
0 − σ2

1

)
σ2
)2

ρ η

The remaining six eigenvectors from ε3, ε4, ..., ε8 are the same as we
saw for the volume Hessian and can be calculated by Eq. (3.11). With
this, we have found explicit expressions for all of the eigenvalues and
eigenvectors of the complete system.

3.3.6 Conclusion

In subsection 3.3.4, we can see by the structure of Eq. (3.9) and Eq. (3.10)
that it is possible to factor the Hessian into one (3×3)-eigensystem. This
system is determined by the three pair-wise roots and the three entangled
roots for the eigenvalues. That extends the findings from Teran et al. in
[Ter05]. Furthermore, we saw that explicit expressions for the eigenvalues
and eigenvectors of each Hessian term, as well as for the whole system,
can be formed. That is important for the optimization process.

With this analysis, we can conclude that the proposed energy is complex
enough to capture a desired level of detail but simple enough to be

Chapter 3 Stable Neo-Hookean Flesh Simulation 39

expressed by closed-form expressions. In the next chapter, I will test the
robustness of the model with various scenarios and check whether the
claims of the authors hold or not.

Chapter 4

Practical Experiments

After the derivation of the novel deformation energy in chapter 3, this
chapter contains some practical experiments to show the robustness of
the model and check that each requirement stated in subsection 3.2.1
is satisfied. The experiments are quasi-static simulations of physical
deformations. So, we deform an object in multiple small steps. Quasi-
static simulation are well suited for flesh simulations ([Ter05]). These
simulations are done by posing constraints over the object and then
minimizing the deformation energy to find the final position of each
vertex.

The authors of the paper SNH-FS already provided an implementation for
an application of their formulated energy1. Firstly in this chapter, I will
examine their implementation and show the results of the experiments
with their code. Later, I will present the results of other scenarios, for
which I had to change the code accordingly. In the end, I will include
a discussion of this new energy formulation considering the results from
this chapter.

4.1 Technology

The code the authors provided was written in C++ using the CMake
build system2. It uses the library Eigen ([GJ10]), version 3.1.2 or newer.

1available at http://graphics.pixar.com/library/StableElasticity/snh_code.tar.bz2
2https://cmake.org/

Chapter 4 Practical Experiments 41

The code consists of a core library cubesim, which provides the 3D mesh
data structure, an implementation of the Stable Neo-Hookean material
model, and Newton solvers that minimize the deformation energy over
the meshes.

The images in this chapter were taken with the help of OpenFlipper,
which is an open-source geometry processing and rendering framework
([MK10]). Furthermore, I used OpenFlipper to create a plugin for some of
the experiments. Inside the plugin, I used the integrated library OpenVol-
umeMesh, which provides a data structure to handle arbitrary polyhedral
meshes ([KBK13]).

4.2 First Experiments

In this section, I will show the results of the experiments I did with the
provided code. The implementation performs a quasi-static simulation
of the stretching of a cube. The cube can either be represented by a
tetrahedral or a hexahedral mesh. In order to simulate the deformation,
the implementation needs a value for each of the two Lamé parameters
and a value for defining the desired resolution as input data. In addition,
the user has to specify the directory into which the output files should
be saved and the material model that should be selected. Since the
simulation is quasi-static, the deformation is subdivided into 25 small
steps instead of one large step. The output files are 26 static objects
in the format .obj. The first file shows the object in its rest state, and
the remaining files illustrate the 25 steps of increased deformation. The
procedure of the implementation is roughly illustrated in Fig. 4.1.

µ, λ,
resolution

Initialize
material
model

Mesh
generation

Update
boundary
conditions

Newton
solve 26 objects

Input Output

Figure 4.1: Illustration of the procedure

Chapter 4 Practical Experiments 42

I will explain how the implementation works based on an example. For
this, I am taking the input variables µ = 1.0, λ = 10.0 and a resolution
of 10.0. These values for the Lamé parameters result in a Poisson’s ratio
of 0.46. The command to start the execution for a tetrahedral mesh with
these input variables is shown in Code snippet 4.1.

$./tetcli 10 stable_neo_hookean 1.0 10.0 output

Code snippet 4.1: Bash command for executing the code

Firstly, the implementation initializes the material model Stable Neo-
Hookean. Then the generation of the mesh starts. The code creates a
cube with 11 vertices (calculated by resolution + 1) in each axis. Hence,
the cube consists of 11 ∗ 11 ∗ 11 = 1′331 vertices in total. The number
of hexahedra, respectively tetrahedra, are calculated by the following
formulas:

Tet count = 6 ∗ 10 ∗ 10 ∗ 10 = 6′000
Cube count = 10 ∗ 10 ∗ 10 = 1′000

Afterwards, the simulation with the 25 steps of the deformation starts.
The code sets two faces of the cube as a boundary condition. A boundary
condition in this context denotes a set of fixed vertices. A boundary
face is a face for which each vertex is fixed. Fixed vertices already have
their final position for the result of the deformation. By updating the
boundary conditions, we stretch the cube. That means that these two
boundary faces are moved further away from each other along the y-axis.
We do this by updating the y-value of the fixed vertices with a new value
newNegativeBoundary or newPositiveBoundary depending on whether
the vertex should move in the positive or negative direction along the y-
axis. The definition of these two values is shown in Code snippet 4.2. The
variable stepNum is the value of the current step from the 25 deformation
steps. For each step the stretching should increase. To achieve this, we
use the variable stepDelta. Its value is equal to 0.1 and stays constant
for these first experiments.

const double newNegativeBoundary = -1.0 - stepNum * ←↩

stepDelta;

Chapter 4 Practical Experiments 43

const double newPositiveBoundary = 1.0 + stepNum * stepDelta;

Code snippet 4.2: Updating y-coordinates of vertices

After the new positions of the fixed vertices are declared, the TetNewtonSolver,
respectively CubeNewtonSolver, is used to minimize the strain energy
over the mesh and determine the position of the remaining vertices. The
optimization process will be further explained in section 4.4. Finally, the
mesh is saved in a .obj file in the directory output.

Tables 4.1 and 4.2 show, the total number of Newton iterations that
had to be performed by the solver to reach an acceptable solution. The
number of iterations are listed for a specific step number or an interval
of step numbers. For example, step number 1 to 10 each required 3
Newton iterations. The step number denotes in which of the 25 steps of
deformation we currently are. In Code snippet 4.2 I called this variable
stepNum. The amount of iterations increases with increasing step number.
This increase is not surprising, since the deformation is also increased
with each step resulting in more calculations.

Step number Iterations
1-10 3
11-21 4
22-25 5

Table 4.1: Newton iterations for
a tetrahedral mesh

Step number Iterations
1-7 4
8-14 5
15-18 6
19-22 7
23-25 8

Table 4.2: Newton iterations for
a hexahedral mesh

The images in Fig. 4.2 show four of the resulting objects of this example.
The choice of the input parameters is the same for each object. The image
shows step 0, which contains the cube in its rest state, step 8, 16, and 24
for a tetrahedral and a hexahedral mesh. The resulting objects capture
the deformation well and are artefact-free even for a larger stretch. Both
the hexahedral and tetrahedral mesh show equally good results. Hence,
the model performs well without restricting us to use only a certain type
of mesh.

Chapter 4 Practical Experiments 44

(a) Stretch test on a hexahedral mesh

(b) Stretch test on a tetrahedral mesh

Figure 4.2: Stretch test performed on a cube with (a) a hexahedral mesh
and (b) a tetrahedral mesh with the same parameters

4.2.1 Comparison of different Input Variables

In order to examine the influence of the input variables, I experimented
with different values. The importance of the resolution is straight forward:
With a higher resolution, the cube consists of more vertices and hexahedra
or tetrahedra. In conclusion, the results are smoother, but we also increase
the computational costs. For this example, I choose a resolution of 30 and
let the other variables stay the same as in the previous example, meaning
λ = 10.0 and µ = 1.0, in order to make a comparison possible. If we
choose a resolution of 30, the cube consists of 29′791 vertices and 162′000
tetrahedra, respectively 27′000 hexahedra. Thus, the cube consists of 27
times more cells than in the previous example.

Tables 4.3 and 4.4 show the amount of Newton iterations until a solution
is reached. If we compare the numbers from this example with the ones
from Table 4.1 and 4.2, we can see that there are slightly more iterations
needed than in the previous example. This increase can be expected
due to the larger number of vertices and cells that the solver needs to

Chapter 4 Practical Experiments 45

consider.

Step number Iterations
1-7 3
8-13 4
14-20 5
21-25 6

Table 4.3: Newton iterations for
a tetrahedral mesh
(res=30)

Step number Iterations
1-4 4
5-10 5
11-15 6
16-19 7
20-23 8
24-25 9

Table 4.4: Newton iterations for
a hexahedral mesh
(res=30)

Fig. 4.3 shows the results with a higher resolution of 30 compared to the
lower resolution of 10 of the previous example on a tetrahedral mesh. It
shows the results of the deformation step 25. We can see that a higher
resolution clearly gives us more realistic results. Analogous, the same
conclusion applies to the hexahedral mesh.

(a) Step 25 with a resolution of 10 (b) Step 25 with a resolution of 30

Figure 4.3: Results with a different resolution on a tetrahedral mesh

In addition, we can increase or decrease the Lamé parameters µ and λ,
which influences the Poisson’s ratio directly. If we decrease λ, the Pois-
son’s ratio also decreases. We can set λ equal to 1.0 and let the other
variables stay the same as in the previous example. Thus, µ is equal
to 1.0, and the resolution is set to 30.0. The Poisson’s ratio indicates
the extent of the deformation. Materials with a higher value are more
easily deformable, which I explained in subsection 2.2.4. Therefore, by

Chapter 4 Practical Experiments 46

decreasing the Poisson’s ratio, the extent of the deformation is also de-
creased. That affects the resulting object as well as the computational
costs. Tables 4.5 and 4.6 show the amount of Newton iteration needed for
the chosen input values. The amount of iterations has decreased for both
meshes. We need fewer iterations because the extent of the deformation
is smaller than before.

Step number Iterations
1-25 3

Table 4.5: Newton iterations for
a tetrahedral mesh
(λ = 1.0)

Step number Iterations
1-25 4

Table 4.6: Newton iterations for
a hexahedral mesh
(λ = 1.0)

Fig. 4.4 shows how the deformation is influenced by changing λ. With
these inputs, the cube gets wider in the middle part, as a lower Poisson’s
ratio indicates that the material is more resistant to stretching.

(a) Step 25 with λ = 10.0 (b) Step 25 with λ = 1.0

Figure 4.4: Results with different values for λ on a hexahedral mesh

Now instead of decreasing the Poisson’s ratio, let’s increase it. We can
achieve that by choosing µ = 0.1 and set λ equal to 10.0 and let the
resolution be 30. This is an extreme case because the Poisson’s ratio
is very close to 0.5. It is also an appropriate value for simulating flesh
behaviour. Tables 4.7 and 4.8 illustrate the amount of Newton iterations
needed for this configuration. As we can see, we need more Newton iter-
ations to solve the system. That is caused by the increased deformation,

Chapter 4 Practical Experiments 47

as the cube gets narrower in the middle part, which makes reaching a
good solution more difficult.

Step number Iterations
1 3
2-3 4
4-6 5
7 6
8-11 7
12 8
13-20 9
21-25 11

Table 4.7: Newton iterations for
a tetrahedral mesh
(µ = 0.1)

Step number Iterations
1 6
2 7
3 8
4 9
5-6 10
7 11
8-9 12
10-11 13
12 14
13-14 15
15 16
16 17
17-19 18
20-25 20

Table 4.8: Newton iterations for
a hexahedral mesh
(µ = 0.1)

A higher Poisson’s value makes the cube more susceptible to stretching.
We can see this effect a bit by comparing the two images in Fig. 4.5,
although the difference is not extreme because the Poisson’s ratios for the
two examples are close to each other. The first image shows a material
with a Poisson’s ratio of approximately 0.46, and the second image shows
a material with a Poisson’s ratio approaching 0.5. The model behaves
well with these input values, and no artefacts can be seen.

Chapter 4 Practical Experiments 48

(a) Step 25 with µ = 1.0 (b) Step 25 with µ = 0.1

Figure 4.5: Results with different values for µ on a tetrahedral mesh

4.3 Additional Tests

For this section, I changed some parts of the given implementation to
perform more tests for this new energy. The first thing I did was to change
the code, such that I was able to perform a quasi-static simulation of
the stretching of an arbitrary mesh. Similar to the provided code, there
are again 25 deformation steps. The implementation expects as input a
tetrahedral or hexahedral mesh in the format .ovm (OpenVolumeMesh).
In the user interface, several values can be selected:

• Mesh type: Describes the cell shape of the mesh. The cell shape
can be either tetrahedral, regular hexahedral, or irregular hexahedral.

• Lambda: One of the Lamé parameters that determine the Poisson’s
ratio.

• Mu: One of the Lamé parameters that determine the Poisson’s
ratio.

• Stretch axis: Axis along which the mesh is supposed to be stretched.
This can be the x-, y-, or z-axis.

• Coordinate value for the first boundary: Determines the position
at which the first boundary face lies.

• Coordinate value for the second boundary: Determines the position
at which the second boundary face lies.

Chapter 4 Practical Experiments 49

• Rate of step size: Rate at which the object should be stretched
along the axis.

The rate of step size corresponds to the variable stepDelta in Code
snippet 4.2. I made this variable adjustable because we are dealing with
arbitrary meshes that could potentially be very large or very small. For
better results, we might want to change the rate at which we stretch the
object.

In order to get the desired results, I had to adjust the code accordingly.
Fig. 4.6 illustrates the modified procedure of the code. The green fields
are the steps that are different from the procedure before. Although
the writing of the file was necessary before, it is explicitly listed here
because the output format of the file has changed. In addition, the
general procedure of updating the boundary conditions also stayed the
same, but I had to adjust some parts so that the user input is processed
correctly.

µ, λ,
resolution

Initialize
material
model

Write file

Load mesh

Convert
mesh

Update
boundary
conditions

Newton
solve

26 objects
Input Output

Figure 4.6: Illustration of the modified procedure

The initialization of the material model stays the same as before. But
now the implementation needs to load the mesh the user provides into
the system. It then converts the input mesh into the data structure that
was used by the provided code. Additionally, if the user input states that
a hexahedral mesh is irregular, each hexahedron gets subdivided into four
tetrahedra. This step was necessary because the subsequent steps expect
the hexahedral mesh to be regular. Then, the boundary conditions are

Chapter 4 Practical Experiments 50

updated according to the input of the user. The stretching is again done
by putting the boundary faces further away from each other along the
stretch axis. Afterwards, the Newton solver calculates the final position
of each vertex that is not fixed. Finally, the mesh is written into a file of
the format .ovm (OpenVolumeMesh).

4.3.1 Cylinder

With the adjusted code, I was able to recreate the example of stretching a
cylinder. This example was shown in the paper SNH-FS, and the authors
claimed that their model can handle this deformation well, even with a
high Poisson’s ratio and no parameter tuning. For my experiments, I
used a hexahedral mesh consisting of 1′290 vertices and 1′036 hexahedra.
Similar to the previous examples of the stretching of a cube, Fig. 4.7
shows step 0 (initial cylinder), 8, 16, and 24 of the deformation. For the
parameters, I chose λ = 10.0, µ = 1.0, and a step size of 0.1, in order to
reach a high Poisson’s ratio and to get a large stretch of the object.

Figure 4.7: Stretch test on a cylinder

The images verify the claims of the authors. The deformation is captured
well and no artifacts can be seen, even for a larger stretch. Therefore, we
can assume that we are not restricted to a specific shape of the deformable
object. In addition, Table 4.9 illustrates the amount of Newton iterations
that were necessary for solving the system. The numbers are a bit higher
for a larger stretch compared to the cube, which consists of a similar
amount of hexahedra. But they are still in a reasonable interval.

Chapter 4 Practical Experiments 51

Step number Iterations
1 2
2-7 3
8-12 4
13-14 5
15-16 6
17-18 7

Step number Iterations
19-20 8
21 9
22 10
23-24 11
25 13

Table 4.9: Newton iterations for the deformation of a cylinder

4.3.2 Scramble Test

In order to highlight the robustness of the model, the authors performed
a scramble test similar to those in Teran et al. ([Ter05]) and Stomakin
et al. ([Sto12]). For this test, they randomly placed the vertices of a
cube within a space of twice its rest volume. This test illustrates how the
model performs under extreme, inverted configurations. Fig. 4.8 shows
the results of the scramble test I performed.

(a) Results after 0, 1, and 2 Newton iterations (from left to right)

(b) Results after 10, 40, and 63 Newton iterations (from left to right)

Figure 4.8: Scramble test on a cube

Chapter 4 Practical Experiments 52

In Fig. 4.8, we can see the solution process for 0, 1, 2, 10, 40, and finally
63 Newton iterations with µ = 1.0 and λ = 10.0. For this example,
I had to alter the code a bit to get the desired functionalities. The
initial hexahedral mesh is a cube consisting of 1′331 vertices and 1′000
hexahedra. Just like the authors, I fixed only four corner vertices and
scrambled the remaining vertices of the cube within a space of twice the
rest volume.

The last image of Fig. 4.8 shows the cube back in its rest state. Hence, the
model is able to recover from this extreme deformation after 63 Newton
iterations. In conclusion, the model has rest stability even under these
inverted configurations.

4.3.3 Experiments on a more complex Mesh

After the experiments with simple meshes as the cube and cylinder, it
would be interesting to see how the energy performs on a more complex
mesh. For the following two experiments, I chose a tetrahedral mesh
consisting of 5′650 vertices and 20′203 tetrahedra. The mesh is formed
in the shape of a bird. Fig. 4.9 shows the object in its rest state from
different angles.

(a) Front and back of the mesh (from left to right)

(b) Top and bottom of the mesh (from left to right)

Figure 4.9: Object in its rest state shown from different angles

Chapter 4 Practical Experiments 53

For the first deformation, I stretched the bird in four directions: along
the left and right wing, the head, and tail. That will give us an extreme
stretch to further test the energy. For the parameters, I set λ equal to
10.0, µ equal to 1.0, and the step size equal to 0.01. The result of this
deformation after ten steps is shown in Fig. 4.10.

(a) Front and back of the mesh (from left to right)

(b) Top and bottom of the mesh (from left to right)

Figure 4.10: Stretched object shown from different angles

As we can see, the wings lost their bend with this extreme stretch, and
the head has become almost a straight line. Overall, the deformed object
looks as good as it can under these extreme conditions, and the energy
behaves well. There are some places where we can imagine which vertices
I pulled to perform the stretch. For example, Fig. 4.11 shows how the
outer part of the wings form almost a zig-zag pattern. Unfortunately,
that was unavoidable because of the configuration of the mesh. If the
vertices were aligned in a straight line, this effect would not be seen.

Figure 4.11: Irregularity on the right wing (from the bird’s point of view)

Chapter 4 Practical Experiments 54

Additionally, instead of just stretching the object, we should also test
how the energy behaves for other deformations. For the next experiment
with this mesh, I pushed the two wings together and pulled the body
down. With this configuration, we can bend the wings and see how the
energy behaves under these conditions. Again, I set λ equal to 10.0, µ

equal to 1.0, and the step size equal to 0.01 Fig. 4.12 shows the deformed
object after ten steps.

(a) Front and back of the mesh (from left to right)

(b) Top and bottom of the mesh (from left to right)

Figure 4.12: Bent object shown from different angles

In the images, we can see that the two wings bend differently, which is
caused by the selection of vertices to pull. Fig. 4.13 shows the deformed
object from both sides to get a better look at the deformation.

Figure 4.13: Side view of bent object

Chapter 4 Practical Experiments 55

For both cases, the results are good, and no artefacts can be seen. With
these experiments, we can conclude that the energy behaves well even
for larger, more complex meshes. In addition, we have now seen different
deformations than just the stretching along one axis of the object, and
the energy was able to handle these configurations. That suggests that
the energy is suited for arbitrary deformations on arbitrary meshes.

4.4 Optimization

In order to achieve realistic results, we not only need to choose a suitable
model but also an appropriate algorithm to get the exact solution or a
satisfying approximation within a reasonable amount of time. For the
performed simulations, a standard Newton solver augmented with a line
search was used. Linear systems were solved by using conjugate gradient
implementation. This section gives an overview of these methods.

4.4.1 Newton’s Method

The task of the optimization, in this case, is to find an acceptable min-
imum of the strain energy after changing the boundary conditions. We
can formulate this problem more generally as

minimize f(x) : Rn → R.

In order to find a minimum, the condition ∇f(x) = 0 has to be satisfied.
For solving this problem, we can use Newton’s method, which iteratively
approaches an acceptable minimum. To achieve this, we need to know the
correct search direction to approach a minima step by step. The search
direction is given by the Newton step, which uses the second derivative
of the function f :

∇xnt := −∇2f(x)−1∇f(x)

Now we need to know how much we can move in this direction. The
line search algorithm can answer this question. It outputs the maximum
amount to move in a given search direction. Newton’s method can be
very fast compared to other methods and produces a solution of high

Chapter 4 Practical Experiments 56

accuracy. The main disadvantage is that the calculation and storage
of the second derivative and computing the Newton step can be quite
costly ([BBV04], p. 484-487, 496). Thus, the analysis of the Hessian of
the deformation energy was a necessary step to show that the energy is
suited for practical applications.

4.4.2 Conjugate Gradient

The conjugate gradient method is an algorithm that solves a system of
linear equations. We can write the problem generally as

Ax = k,

where A is a symmetric, positive definite (n × n)-matrix. Both A and
k are known. The conjugate gradient method delivers an approximation
of the exact solution within a certain tolerance. It iteratively searches
for an appropriate x, starting with an initial estimate. It usually reaches
convergence fast and is computationally efficient ([HS52], p. 409-412). In
the code, the conjugate gradient method was used iteratively with the help
of the library Eigen, which has already implemented the corresponding
functionalities.

4.5 Discussion

The authors of the paper SNH-FS introduced a novel hyperelastic model
for the deformation energy. My first approach for this thesis was to dive
into the topic of flesh simulation. The most important topics concerning
this learning process are introduced and explained in chapter 2. The next
step was to understand and being able to explain the thought process
of the authors. The paper itself can be a bit complicated for somebody
who does not yet have a broad knowledge of the field. I documented this
step in chapter 3. In the same chapter, it also appears to be clear why
a new energy formulation was necessary. None of the existing energies
satisfied all of the requirements stated in subsection 3.2.1. Some of them
even produced severe artefacts or could not preserve the volume. Finally,

Chapter 4 Practical Experiments 57

I conducted some experiments on my own to verify some of the author’s
claims. The implementation the authors provided helped me during this
process, not only for the simulations but also to get a better understanding
of the energy. In chapter 4, I first experimented with different values
for the Poisson’s ratio and was able to verify the claim that the model
behaves well for a wide range of Poisson’s ratio, even for one close to
0.5. In addition, I could recreate some other examples they covered
in their paper. For each simulation included in this thesis, the model
satisfies the requirements the authors listed without the need of using
filter parameters. Furthermore, the scramble test validates the robustness
of the model, and the deformations on the bird mesh suggest that the
energy is suited for arbitrary deformations on arbitrary meshes. But in
order to make a final statement of the quality of the energy, it would be
necessary to make more specific tests, for example, the behaviour of a
hand or an arm. In addition, the results should be compared with the
ones produced from other energy formulations, similar to some of the
tests the authors included in their paper. Unfortunately, this would have
been beyond the scope of this thesis. From the findings I could require
during my thesis, it nonetheless appears that there is a great improvement
in the quality of the simulation with this new energy model for materials
with a high Poisson’s ratio.

List of Figures

2.1 Deformation Map . 6
2.2 Stretching of a cuboid 6
2.3 Stress-strain curve . 9

3.1 Inversion of a tetrahedron 18
3.2 Reflection of a triangle over the y-axis 18
3.3 Illustration of meta stability 19

4.1 Illustration of the procedure 41
4.2 Stretch test performed on a cube 44
4.3 Results with a different resolution on a tetrahedral mesh 45
4.4 Results with different values for λ on a hexahedral mesh 46
4.5 Results with different values for µ on a tetrahedral mesh 48
4.6 Illustration of the modified procedure 49
4.7 Stretch test on a cylinder 50
4.8 Scramble test on a cube 51
4.9 Object in its rest state shown from different angles . . . 52
4.10 Stretched object shown from different angles 53
4.11 Irregularity on the right wing (from the bird’s point of view) 53
4.12 Bent object shown from different angles 54
4.13 Side view of bent object 54

List of Tables

2.1 Materials with their Poisson’s ratio 11

3.1 Quantities derived from the Deformation Gradient 17
3.2 Summary of proposed energies 19
3.3 Energies split up into their 1D length and 3D volume term 20

4.1 Newton iterations for a tetrahedral mesh 43
4.2 Newton iterations for a hexahedral mesh 43
4.3 Newton iterations for a tetrahedral mesh (res=30) 45
4.4 Newton iterations for a hexahedral mesh (res=30) 45
4.5 Newton iterations for a tetrahedral mesh (λ = 1.0) 46
4.6 Newton iterations for a hexahedral mesh (λ = 1.0) 46
4.7 Newton iterations for a tetrahedral mesh (µ = 0.1) . . . 47
4.8 Newton iterations for a hexahedral mesh (µ = 0.1) 47
4.9 Newton iterations for the deformation of a cylinder . . . 51

Code

4.1 Bash command for executing the code 42
4.2 Updating y-coordinates of vertices 42

List of abbreviations

PK1 first Piola-Kirchhoff stress tensor 20, 23

SNH-FS Stable Neo-Hookean Flesh Simulation . . . 2–4, 15, 21, 30, 31

SVD singular value decomposition 11–13, 16, 26, 29

UTS ultimate tensile strength . 9

Bibliography

[BBV04] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe.
Convex optimization. Cambridge university press, 2004.

[Ber15] Jörgen Bergström. “5 - Elasticity/Hyperelasticity”. In: Me-
chanics of Solid Polymers. Ed. by Jörgen Bergström. William
Andrew Publishing, 2015, pp. 209–307. isbn: 978-0-323-31150-
2. doi: https://doi.org/10.1016/B978-0-323-31150-2.
00005-4. url: http://www.sciencedirect.com/science/
article/pii/B9780323311502000054.

[Bow09] Allan F Bower. Applied mechanics of solids. CRC press, 2009.

[BW97] Javier Bonet and Richard D Wood. Nonlinear continuum me-
chanics for finite element analysis. Cambridge university press,
1997.

[For14] William Ford. Numerical linear algebra with applications: Us-
ing MATLAB. Academic Press, 2014.

[GJ10] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tux-
family.org. 2010.

[GV12] H Golub Gene and F Van Loan Charles. Matrix computations.
Vol. 3. 2012.

[HS52] Magnus R Hestenes, Eduard Stiefel, et al. “Methods of con-
jugate gradients for solving linear systems”. In: Journal of
research of the National Bureau of Standards 49.6 (1952),
pp. 409–436.

[ITF04] Geoffrey Irving, Joseph Teran, and Ronald Fedkiw. “Invertible
finite elements for robust simulation of large deformation”.
In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics
symposium on Computer animation. 2004, pp. 131–140.

https://doi.org/https://doi.org/10.1016/B978-0-323-31150-2.00005-4
https://doi.org/https://doi.org/10.1016/B978-0-323-31150-2.00005-4
http://www.sciencedirect.com/science/article/pii/B9780323311502000054
http://www.sciencedirect.com/science/article/pii/B9780323311502000054

Bibliography F

[KBK13] Michael Kremer, David Bommes, and Leif Kobbelt. “OpenVolumeMesh–
A versatile index-based data structure for 3D polytopal com-
plexes”. In: Proceedings of the 21st International Meshing
Roundtable. Springer, 2013, pp. 531–548.

[Kor17] Alexander M. Korsunsky. “Chapter 2 - Elastic and Inelastic
Deformation and Residual Stress”. In: A Teaching Essay on
Residual Stresses and Eigenstrains. Ed. by Alexander M. Ko-
rsunsky. Butterworth-Heinemann, 2017, pp. 5–20. isbn: 978-
0-12-810990-8. doi: https://doi.org/10.1016/B978-0-12-
810990-8.00002-1. url: http://www.sciencedirect.com/
science/article/pii/B9780128109908000021.

[Lak87] Roderic Lakes. “Foam structures with a negative Poisson’s
ratio”. In: Science 235 (1987), pp. 1038–1041.

[Lak93] Roderic Lakes. “Advances in negative Poisson’s ratio materi-
als”. In: Advanced Materials 5.4 (1993), pp. 293–296.

[LM15] Joerg Liesen and Volker Mehrmann. Linear algebra. 1st ed.
2015. Springer International Publishing, Switzerland 2015:
Springer, Cham, 2015. isbn: 978-3-319-24344-3.

[MK10] Jan Möbius and Leif Kobbelt. “OpenFlipper: an open source
geometry processing and rendering framework”. In: Interna-
tional Conference on Curves and Surfaces. Springer. 2010,
pp. 488–500.

[Moo40] Melvin Mooney. “A theory of large elastic deformation”. In:
Journal of applied physics 11.9 (1940), pp. 582–592.

[MR09] P. H. Mott and C. M. Roland. “Limits to Poisson’s ratio
in isotropic materials”. In: Phys. Rev. B 80 (13 Oct. 2009),
p. 132104. doi: 10.1103/PhysRevB.80.132104. url: https:
//link.aps.org/doi/10.1103/PhysRevB.80.132104.

[Ogd97] Raymond W Ogden. Non-linear elastic deformations. Courier
Corporation, 1997.

[Riv48] RS Rivlin. “Large elastic deformations of isotropic materials
IV. Further developments of the general theory”. In: Philosoph-
ical Transactions of the Royal Society of London. Series A,

https://doi.org/https://doi.org/10.1016/B978-0-12-810990-8.00002-1
https://doi.org/https://doi.org/10.1016/B978-0-12-810990-8.00002-1
http://www.sciencedirect.com/science/article/pii/B9780128109908000021
http://www.sciencedirect.com/science/article/pii/B9780128109908000021
https://doi.org/10.1103/PhysRevB.80.132104
https://link.aps.org/doi/10.1103/PhysRevB.80.132104
https://link.aps.org/doi/10.1103/PhysRevB.80.132104

Bibliography G

Mathematical and Physical Sciences 241.835 (1948), pp. 379–
397.

[SGK18] Breannan Smith, Fernando De Goes, and Theodore Kim. “Sta-
ble Neo-Hookean Flesh Simulation”. In: ACM Trans. Graph.
37.2 (Mar. 2018), 12:1–12:15. issn: 0730-0301. doi: 10.1145/
3180491. url: http://doi.acm.org/10.1145/3180491.

[Spe80] A. J. M. Spencer. Continuum Mechanics. 2004th ed. 31 East
2nd Street, Mineola, N.Y. 11501: Dover Publications, Inc.,
1980. isbn: 0-486-43594-6 (pbk.)

[Sto12] Alexey Stomakhin et al. “Energetically consistent invertible
elasticity”. In: Proceedings of the 11th ACM SIGGRAPH/Eu-
rographics conference on Computer Animation. 2012, pp. 25–
32.

[Ter05] Joseph Teran et al. “Robust quasistatic finite elements and
flesh simulation”. In: Proceedings of the 2005 ACM SIGGRAPH/Eu-
rographics symposium on Computer animation. 2005, pp. 181–
190.

[WY16] Huamin Wang and Yin Yang. “Descent methods for elas-
tic body simulation on the GPU”. In: ACM Transactions on
Graphics (TOG) 35.6 (2016), pp. 1–10.

https://doi.org/10.1145/3180491
https://doi.org/10.1145/3180491
http://doi.acm.org/10.1145/3180491

	Introduction
	Motivation
	Structure

	Background
	Notation
	General Notation
	Tensor Notation
	Summary

	Concepts of Continuum Mechanics
	Deformation
	Deformation Gradient
	Deformation Energy
	Material Constants

	Mathematical Background
	Singular Value Decomposition
	Polar Decomposition
	Frobenius Norm

	Deformation Gradient
	Singular Value Decomposition of F
	Polar Decomposition of F
	Relative Volume Change
	Cauchy-Green

	Stable Neo-Hookean Flesh Simulation
	Deformation Gradient
	Energy Formulation
	Stability
	Existing Neo-Hookean Energies
	Rest Stabilization
	Meta-Stability under Degeneracy
	Lamé Reparameterization

	Energy Analysis
	First Piola-Kirchhoff Stress (pk1)
	The Energy Hessian Terms
	The Tikhonov, Mu, and Gradient Terms
	The Volume Hessian
	The Complete Eigensystem
	Conclusion

	Practical Experiments
	Technology
	First Experiments
	Comparison of different Input Variables

	Additional Tests
	Cylinder
	Scramble Test
	Experiments on a more complex Mesh

	Optimization
	Newton's Method
	Conjugate Gradient

	Discussion

	List of Figures
	List of Tables
	Code
	List of abbreviations
	Bibliography

