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Abstract

In the past years, much research has been done in the field of reconstructing indoor scenes.
This is not a trivial task because of the clutter and occlusion that may occur due to furniture.
In this work, a new algorithm is presented for reconstructing rooms from point clouds. It is
able to model diagonal ceilings and multiple ceiling-heights. The algorithm is split into two
parts. In the first part, planes are detected using Principal Component Analysis (PCA) and
a new clustering-algorithm. In the second part, the algorithm detects corners and edges and
links them together. Finally, a closed triangle mesh of the room is returned. We show how
our algorithm is able to work on synthetic data and on point clouds that were captured from a
laser scanner.

Prof. Dr. David Bommes, Computer Graphics Group, University of Bern, Supervisor
Simone Raimondi, Computer Graphics Group, University of Bern, Assistant
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1
Introduction

This thesis focuses on the reconstruction of non-empty rooms. The algorithm takes a point cloud as input
and outputs a closed mesh of the reconstructed room. One key attribute of this thesis is that it is able to
handle diagonal ceilings and multiple ceiling heights per room. Most research that has been done in the
past years assumes horizontal ceilings and vertical walls. A second key attribute is that the room may
contain furniture. Furniture is difficult to handle because it does not only hide parts of the walls and the
floor, but it also generates points that are not wanted. We are able to reconstruct the contours of the room
despite occlusions and generate a closed mesh as a result.
There exist current algorithms which are able to convert point clouds of rooms into a mesh or other formats.
However, many of them require the room to be in a very specific structure or are not able to work with
furniture inside.
The contributions of this thesis are:

1. A clustering-algorithm which separates the point cloud into sets of points that lie on the same plane.

2. An algorithm which is able to find edges and corners in the room.

3. An algorithm which is able to link the corners together to a closed room.

This thesis consists of 6 chapters. In the remaining part of this chapter (chapter 1), background information
is given. Chapter 2 discusses related work. Chapters 3 and 4 describe the project itself. Here, the most
important parts of the algorithm are explained. Chapter 5 shows how the algorithm performs on different
point clouds. Generated results and also the runtime of the algorithm are shown. Chapter 6 contains a
conclusion and elaborates on future work.
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CHAPTER 1. INTRODUCTION 4

1.1 Point Cloud
A point cloud is a set of points within a vector space. Each point consists of its location and may also
contain other attributes such as a normal or a color.
The point clouds used in this thesis contain only the coordinates of the points. All other information
was either not generated or stripped away. This is on one hand very beneficial because it means that the
algorithm does not require other information to work correctly. On the other hand, the algorithm could be
improved by adding more information such as normals or colors. The chapter ”future work” (Chapter 6)
elaborates more on this.
The point clouds were either generated synthetically or taken from real rooms using a laser scanner. The
following two sections explain how the point clouds were generated with each method.

1.2 Synthetic Generated Point Clouds
For the synthetic generation of point clouds, a program was written which acts like a virtual laser scanner.
It takes a mesh and the position of the laser scanner as input and outputs a point cloud. It works like
raytracing, but stops at the first intersection and has a field of view of 360◦ x 300◦. To model the noise of
real laser scanners, the resulting intersection points are changed by a small random vector. This vector has
a length between 0mm and 2mm.

(a) Input (mesh) (b) Output (point cloud)

Figure 1.1: A model of a room transformed into a point cloud

1.3 Laser Scanner
To acquire point clouds of real rooms, we used a laser scanner called ”Leica Cyclone FIELD 360”. Its
accuracy is 1.9mm within 10m, 2.9mm within 20m and 5.3mm within 40m. The field of view is 360◦ x
300◦.

1.4 Principal Component Analysis (PCA)
Principal Component Analysis (PCA) is a method that computes new axes for a dataset. These axes are
called ”principal components”. Principal components are unit vectors that fit the data the best and are
ordered by importance. In machine learning, this method can be used to get a better understanding of the
data and perform a dimension reduction by removing less important axes.



CHAPTER 1. INTRODUCTION 5

In this thesis, it is used to check whether a set of points is rather flat or voluminous. This is done by
comparing the importances λi of the principal components to each other. There are 3 special cases the
principal components can take in the 3-dimensional space:

Figure 1.2: 3 cases of PCA

In Figure 1.2, the principal components ~pci are multiplied by their respective importance λi. In the first
example, λ3 is substantially smaller than the other two. In the second example, λ2 and λ3 are substantially
smaller than λ1. In the last example, all three vectors have about the same size. It is not hard to see that
we are looking for the first case where λ3 is substantially smaller than λ1 and λ2. In this case, the set of
points expands only in two main directions and is rather flat. For a set of points, we compute the following
two scores:

planarScore = 1− λ3
λ2

stringScore = 1− λ2
λ1

, for λ1 > λ2 > λ3 the importances of the principal components sorted in decending order

PlanarScore is an indicator for the planarity of a set of points. It holds a value between [0,1], while
numbers close to 1 indicate that the set of points is planar. It works by comparing the smallest importance
λ3 to the second smallest, λ2. In case of a planar set of points, λ3 is substantially smaller than λ2. The
division λ3

λ2
is very small and planarScore close to 1. On the other hand, if λ3 gets close to λ2, the division

λ3

λ2
is close to 1 and planarScore close to 0.

StringScore was introduced to make sure that λ2 and λ1 have around the same size. This is necessary
because we want to avoid cases where the set of points is flat, but also like a string. StringScore works the
same way as planarScore, with the only difference that it compares λ2 to λ1.

The PCA is used in this thesis for the clustering algorithm (Chapter 3) at two places:

1. Computing the normals for the whole point cloud, and at the same time excluding points from the
point cloud where the local neighborhood is not flat enough.

2. Computing the best-fitting plane for clusters.



2
Related Work

2.1 Related Work
In the past years, much work has been done in the field of reconstructing interiors or even complete
buildings from point clouds. This section intends to give an overview of the past research and does
not claim to be complete. The works differ from one another in many aspects. The most common and
important ones are input format, occlusion handling, parts of the building, restrictions for the structure of
the building and whether windows and doors are modelled. All works described in this section require a
point cloud as input and are able to handle some form of occlusion. Some of the works require additional
data such as acquisition path (in case of Mobile Laser Scanners), Scanner positions, number of rooms and
other information.

2.1.1 Whole building with multiple storeys
There exist works that are able to process point clouds of whole buildings, for example [5], [3], [10], [13],
[19]. All of them mention to use a projection of the points onto the z-axis. Floors and ceilings show up as
peaks in this diagram because they are in most cases horizontal and stretch over the whole building. The
detected floor- and ceiling-heights are then used to divide the point cloud into separate storeys. After the
separation into storeys, they use algorithms for reconstructing single storeys. How they do it and also how
other works do it is described in the next section.

Some works that are able to process whole buildings have features that other works only operating
on single storeys are not able to provide. [3] is able to reconstruct staircases in a building. They are also
able to model empty spaces across multiple storeys. [5] mentions the possibility to use facade information
for window detection in future works.

6



CHAPTER 2. RELATED WORK 7

2.1.2 Process single storeys and rooms
Besides the works mentioned in the previous section, there are other works that are able to reconstruct
storeys or rooms of a building. Previous work differentiates between plane-based, segmentation-based and
volumetric-based reconstruction methods. In plane-based reconstruction methods, surfaces are extracted
and used for the reconstruction. Examples for plane-based reconstruction algorithms are [18], [2], [12],
[11], [15], [17], [9]. Segmentation-based reconstruction algorithms segment the storey into rooms and are
able to infer walls with the segmentation. Some works using this approach are [5], [3], [8], [6], [1], [7], [4].
Volumetric-based approaches divide the space into volumetric shapes. This was done for example in [14].

There are different ways how the works deal with occlusions and clutter generated from furniture. A
common way is to assume that furniture doesn’t reach the ceiling. Walls are then detected because they are
vertical and contain points near the ceiling. This approach is used for example in [5], [1], [3]. Another
approach is to add context to detected surfaces. Context could be for example that a surface bounded to
the ceiling and the floor is more likely to be a wall. Some works that use context-based clutter recognition
are [15], [8].

2.1.3 Detect doors and windows
There exist many works that are able to detect and model doors and windows. This is not trivial because a
missing part in the wall may either be due to occlusion, or it may simply be an opening (window or door).
In order to reliably differentiate between ”empty” and ”occluded” parts of the wall, the algorithm must
know if there is an object that occludes the part. This can be done by implementing a raytracing algorithm
as done in [2], [4], [12], [15], [13], [7], [20].

2.1.4 Special room layouts
Most works described above work only with rooms that have horizontal ceilings and floors and planar
vertical walls. However, there are some exceptions that are also able to work in more complex room
layouts. [1] is able to reconstruct rooms with curved walls. Another work, [8], is able to reconstruct rooms
with diagonal ceilings.



3
Clustering

The first part of the algorithm is clustering. In this step, points that lie in the same 3-dimensional plane are
put together in a single cluster. A cluster is defined by a set of points, a center and a normal. The center
and the normal together define the cluster-plane.

3.1 Cluster-Algorithm
The Cluster-Algorithm is an algorithm which takes a point cloud as input and assigns points that lie in
the same 3-dimensional plane to the same cluster. Points for which the local neighborhood is not flat are
excluded because they might belong to multiple clusters. Figure 3.1 shows a point cloud before and after
clustering:

(a) Before Clustering (b) After Clustering

Figure 3.1: Room 104 before and after clustering

The clustering-algorithm is divided into three parts:

1. The PCA, planarScore and stringScore are computed for each point in the point cloud.

2. An iteration over each point yields the clusters. Points whose planarScore or stringScore do not
exceed a certain threshold are excluded.

8
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3. Similar clusters are merged together.

The following subsections describe each step in detail.

3.1.1 PCA computation
The PCA computation is done for each point separately. For this, the K closest points are taken and the
PCA is computed as described in Chapter 1. If this subset of points is flat enough (i.e. planarScore
exceeds a certain threshold), the smallest principal component ~pc3 can be seen as the normal of the point.
The most crucial part is to decide the value of K. If K is set too small on a high density point cloud,
wall-irregularities are captured instead of the ”real” wall-normal. Consider the following wall:

Figure 3.2: A rough wall. On the left side, K is set too small and because of that, the normal belongs to
the wall-irregularity. On the right side, the normal belongs to the actual wall.

If the amount of neighbors, K, is set too small, the radius of the PCA is also too small. We might end up
calculating the normal(s) of each bump instead of the more general normal of the wall. As a consequence,
the points on the wall get all very different normals and recognizing that these points belong to the same
wall is difficult and error-prone. If K is set high enough, the PCA looks at a bigger part of the wall and the
resulting normal of the point belongs to the actual wall instead of the bump in its local neighborhood.
The radius of the PCA and the maximum extend of the wall-irregularities have to be set by the user. By
default, they are set to 0.1m and 0.005m respectively. With those two values, the algorithm is able to
determine the required neighbors (K) and the threshold for the planarScore, planarScoreTH .

The number of required neighbors K is computed using the average spacing. First, the average spacing of
the points is computed using the two-ring neighborhood (20 neighbors). Second, the required number of
neighbors K is computed by dividing the area of the PCA by the average area of a point:

K =
π × PCAradius2

π × ( avgspacing
2 )2

=
PCAradius2

( avgspacing
2 )2

The point cloud may be less dense at some points and that is why we might end up taking too much
neighbors. To avoid this, the PCA-computation also looks at the distance of each neighbor and excludes it
if it is beyond the PCA-radius.
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The planarScore is described in Chapter 1 in more detail. Basically, it describes the ratio between
the smallest and the second smallest principal component. The following image shows a wall from the
side:

Figure 3.3: A wall from the side in black. Possible captured points in blue. The principal components of
the PCA in green. The predefined values maxWallIrregularities and PCAradius in violet.

To classify a set of points as planar, we require the computed planarScore of the PCA to be bigger than a
certain threshold value. This threshold value is computed as follows:

planarScoreTH = 1− maxWallIrregularities
2 ∗ PCAradius

In general, this should return numbers between 0.9 and 1. The meaning of 0.9 is that we require λ3 to be
at least 10 times smaller than λ2. In this case, the points stretch mainly in only two directions and don’t
vary much along the third principal component.
If planarScoreTH is under 0.9, the computed normal may deviate too much from the ”real” surface-
normal. In the extreme case of 2 ∗ PCAradius == maxWallirregularities, we tell the algorithm that
within the PCA-radius, the points may scatter all they want and should still be considered as flat. As a
consequence, planarScoreTH will be equal to 0 and we classify all points as flat. We get normals, but
they do certainly not represent the actual surface-normals in general.

3.1.2 Cluster generation
After the PCA computation, we use the computed values to generate clusters. The basic idea is that points
with the same normal that lie on the same plane are put in the same cluster. In particular, a point has to
fulfil three requirements in order to belong to a certain cluster:

1. The point has to be close to the plane defined by the cluster

2. The point-normal has to be similar to the cluster-normal

3. The point has to be close to at least one point that is already in the cluster.

Figure 3.4: Room from above. Points p1
and p2 should not be added to cluster c1

The reason for the first and second requirement is visualized
in Figure 3.4. The cluster c1 should only contain points
belonging to the horizontal black wall close to c1. The points
p1 and p2 should not be added to it. Requirement 1 ensures
that p1 is not added to the cluster because p1 is too far away
from the cluster-plane. Requirement 2 ensures that p2 is not
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added, because it’s normal is not similar to the cluster-normal. The reason for the third requirement is
because the computed normals are not exact. A small inaccuracy in the normal makes a big difference for
the plane at high distances away from the center.

Figure 3.5: An overview of the cluster generation.

Figure 3.5 shows how the clusters are generated. The algorithm starts by iterating over all points in the
point cloud. For every point p, it is then checked if it’s neighborhood is flat. This is the case when the
planarScore of p is greater than planarScoreTH defined in the previous section. The stringScore of
p is also used to avoid cases where the local neighborhood is like a string and doesn’t span an area. If the
local neighborhood is flat, the algorithm tries to add p to an existing cluster. If there is no cluster that fits p,
a new one is created.
To increase the speed of the algorithm, the iteration over all points uses a queue within the standard
iteration. This queue contains neighbors of already processed points. They are added after processing
a point. With this setup, the algorithm becomes a region-growing algorithm. This is necessary because
the third requirement requires points to be close to the cluster. If the iteration wasn’t region-growing, the
algorithm would be very slow because too many clusters would be created.
When trying to add a point to a cluster, we need to check for the three requirements described at the
beginning of this section. For requirement 1, the required distance to the plane is set to 0.05m. It can
be set by the user. For requirement 2, the maximum allowed angle-difference reqAngle between the
normal of the point and the normal of the cluster is calculated from the user-defined variables PCAradius
and maxWallIrregularities. For this, we compute the maximum possible angle between two normals
belonging to the same surface. Consider the following image:
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Figure 3.6: The same wall captured at two different points

Figure 3.6 shows a wall in black and two captured points with normals on the wall. The angle between
those two normals is the maximum possible angle-difference between two points on a wall. This is because
the wall is as irregular as possible at both points.
We can use this angle as the maximum allowed deviation from the cluster-normal when trying to add a
point to the cluster. It is calculated as follows:

reqAngle = 2 ∗ acos( ~vp · ~vi
‖ ~vp‖ ∗ ‖~vi‖

), for ~vp =
(
2 ∗ PCAradius

0

)
~vi =

(
2 ∗ PCAradius

maxWallIrregularities

) (3.1)

The more points we add to a cluster, the more precise becomes its normal. At the beginning how-
ever, it is not very precise and we may put points that do not belong to the same wall in the same cluster,
especially if they are far away from each other. To overcome this problem, we introduced requirement 3
which requires points to be close to the cluster when adding them. For this, a method is needed to compute
the distance from a point to the cluster. A very simple approach would be to compute the distance to every
point in the cluster and take the smallest one. However, this is not very efficient and the distance is more
precise than needed. The algorithm uses a list called ”markerPoints”. Every time a point is added to the
cluster and it is more than 0.1m away from all marker-points, it is added to the marker-point list. The
distance from a point to the cluster is then computed by computing the distance to all marker-points and
take the smallest one.

3.1.3 Cluster merging
After the clusters are generated, they need to be merged because of three reasons:

1. Points on the same surface may have created multiple clusters.

2. A surface may have bigger irregularities like a curtain.

3. Clusters that are separated by space are merged into one cluster.

The merging-algorithm merges the clusters in the same order as mentioned above. This is important
because merging two clusters results in a bigger cluster with a possibly changed normal. The resulting
cluster may then not be able anymore to merge with more important/similar clusters. For example, close
similar clusters should be merged first before merging spatially separated clusters.
The following figures show a room before and after merging:
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(a) Before merging (b) After merging

There are two different ways two clusters can get merged. In the first way, two clusters are merged if
the center of the smaller cluster fits into the bigger cluster. In the second way, two clusters are merged
if a certain percentage of the points of the smaller cluster fit into the bigger cluster. The algorithm uses
merging-tickets to specify which of the two methods is used.

A merging-ticket contains the following information:

• The required angle for a point to belong to a certain cluster

• The required distance for a point to belong to a certain cluster

• The required percentage of points of the smaller cluster that should also fit into the bigger cluster.
If set to 0, only the center of the smaller cluster needs to fit into the bigger cluster.

• The maximum allowed distance between the two clusters.

For each of the mentioned merging reasons in the beginning of this section, a merging ticket is created.
They are displayed in the table below:

reqAngle reqDist reqPercentage reqCloseness

Merge close similar clusters π/32 0.04 0 0.5m
Merge close irregularities (e.g. curtains) π/4 0.05 0.8 0.5m
Merge distant similar clusters π/32 0.1 0 -1 (infinity)

Most of the values in the table above are heuristic values and may be changed by the user. They were only
tested empirically and changing them might improve the clustering result.
For merging reason 1 and 3, the algorithm uses the faster merging-approach where only the cluster-center
of the smaller cluster is tried to fit into the bigger cluster. In the table, this is depicted in the ”reqPercentage”
column. For merging reason 2, this is not possible because the normals of the two clusters might be very
different. This is the reason why we use the approach with the required percentage. Because of this,
the normals of the two clusters may be very different. The algorithm accepts clusters that have different
normals up to 45◦.



4
Clustering to Mesh

After the clustering, it is necessary to combine the clusters to generate a closed mesh. This is not trivial
because of three reasons. First, the clusters are still just a set of points with an associated plane. We need
to find out which clusters need to be linked to which other clusters. Second, the furniture inside the room
was not removed and does also contain clusters which should not be part of the resulting mesh. Third, the
furniture also hides parts of the required clusters. The algorithm should reconstruct the missing parts to
output a closed mesh.
Two algorithms were developed to address this challenge. The first one is much simpler and works only
on a small set of rooms. It assumes that there is just one flat floor and one flat ceiling. Furthermore, it
only works with vertical walls. The second algorithm is able to reconstruct rooms with diagonal walls
and ceilings. It also works with multiple ceiling-heights. It is based on triangles, which represent corners
between 3 clusters. Both algorithms are not able to detect doors and windows. This component was not
implemented since it is already well studied. Works on this subject are for example [2], [4], [12], [15],
[13], [7], [20].

4.1 Algorithm 1 - Projecting walls to 2 dimensions
This section describes a simple algorithm for transforming the clusters into a closed mesh. The final
algorithm uses another approach described in the next section. Nevertheless, this simple algorithm is also
described to show the capabilities and limitations of requiring walls to be vertical.
This algorithm works by finding the walls, ceiling and floor once the clustering is done. For this, it assumes
that the point cloud is aligned such that the floor and ceiling clusters have vertical normals. The floor is
then the cluster whose center has the smallest z-value, and the ceiling is the cluster whose center has the
highest z-value. The walls need to have a horizontal normal and must reach from the ceiling to the floor.

4.1.1 Motivation for Algorithm 1
The following scenario shows the inspiration for the idea that walls must reach from the bottom to the top.
Consider two different rooms, one with a wardrobe and one with a chimney covered by a wall:

14
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Figure 4.1: Two rooms, one with a wardrobe and one with a chimney

Once the point cloud is taken from those two rooms, the only part where the clusters differentiate from
each other is that the clusters on the side of the wardrobe don’t reach the ceiling.

4.1.2 First part of Algorithm 1, Wallfinding
The wallfinding-algorithm finds wall-clusters and projects them onto the xy-plane. A cluster is considered
to be a wall-cluster if it’s vertical and if it reaches from the floor to the ceiling at some locations. There
may be cases where furniture hides the whole lower part of a wall. To address such cases, the user is able
to set two variables which define how close a wall must be to the floor and ceiling.

4.1.3 Second part of Algorithm 1, Separation of walls
Since the clustering puts all points that lie on the same plane with the same normal in one cluster, there
may be cases where one cluster contains multiple walls. Figure 4.2 shows an example of such a case:

Figure 4.2: A cluster that contains 2 walls

In order to separate the walls, the algorithm walks through the projected wall from one end to the other. If
there is a gap of 1cm where no points are present in the whole vertical axis, the walls are separated. The
algorithm then continues with the remaining part.
This step is necessary for the last part of the algorithm, where walls are combined in order to get a closed
shape. It is also necessary because it may even be the case that a wall is in the same cluster as furniture.
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4.1.4 Third part of Algorithm 1, Reconstruction
The reconstruction of the room takes 2-dimensional walls as input and combines them to a closed polygon.
In the end, the floor and ceiling levels are used to create a 3-dimensional room.
The algorithm first intersects each wall with all other walls and stores the result in wallIntersections.
After that, it combines the walls by starting at the biggest wall and then iterating over wallIntersections.
The wall-intersection for which the intersection point is closest to both walls is chosen and the two walls
are combined. The algorithm continues at the new chosen wall and looks for an intersection at the other
end of the wall. This continues until we reach the starting wall.
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4.2 Algorithm 2 - Triangle finding and linking
The idea of this algorithm is to find every possible corner in the room and then linking them together to a
closed room. For this, it intersects every combination of 3 clusters that are not parallel to each other. For
each intersection point, we also get 3 intersection lines. If the intersection point is a corner of the room,
the intersection lines have only close points on one side. The other side of the line behind the intersection
point should be empty.

Figure 4.3: An example of a corner and the 3 intersection lines

In the algorithm, an intersection line restricted to only one side of the intersection point is called an arrow.
It can be seen as a vector describing the extension of the wall. A corner with 3 arrows is called a triangle.

4.2.1 Motivation for Algorithm 2
The motivation for this algorithm were the limitations of algorithm 1. Because algorithm 1 works in the
2-dimensional space after finding the walls, it is not possible to reconstruct diagonal walls and ceilings.
This required a new approach which works in 3 dimensions. By allowing diagonal walls and ceilings, it
gets much harder to check whether something is a wall or furniture. It is not possible to check whether
a cluster reaches from the floor to the ceiling because there may be different ceiling heights at different
positions in the room.

4.2.2 First part of Algorithm 2, triangle finding
The triangle finding algorithm gets 3 clusters as input and has to determine the 3 vectors describing the
extension of the wall (arrows). Because the vectors of the arrows are the same as the ones from the
intersection lines, the algorithm just needs to determine the sign of each intersection vector.
If one arrow can’t be determined, the intersection is not a corner, marked as invalid and not processed
further. The algorithm also computes a score between [-1, 1] of how likely it is a corner and suggests
lengths for the arrows.

In the beginning, the cluster-points of all 3 clusters are projected to a 2-dimensional plane such that
the x- and y-axis of the 2-dimensional plane correspond to the intersection lines in 3 dimension.
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Figure 4.4: The 3 clusters of the intersection showed on the left side are projected to 2 dimensions.

For a corner which has not 90 degrees between two clusters, it is necessary to shear map the projection to
align the axes of the 2-dimensional space to the intersection lines.

Figure 4.5: The blue cluster is shear mapped during the transformation to 2 dimensions to align vectors 1
and 2 with the x- and y-axis of the projection.

The projection to 2 dimensions enables us to check whether only one quadrant contains points in a local
environment around the center. In the case of a corner, all 3 projections should locally only contain points
in one quadrant. Note that every resulting arrow in the 3 dimensional space is determined by 2 projections.
The algorithm uses the following convention for the x- and y-axis of each projection.
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Figure 4.6: The convention the algorithm uses for the arrows and their respective axis in the projections.
Please note that the center of each projected coordinate system is in reality at the intersection point. They
were moved away for better visibility

Multiple approaches were tested to get the 3 arrows of an intersection. The approach that is used now
yields the best results, but is the most computing intensive. The algorithm consists of the following steps:

Algorithm 1: Triangle finding
1. The 3 Clusters are projected and possibly shear mapped to 2 dimensions.
2. The 2-dimensional space of all 3 projections is divided

into squares of 0.1m2.
3. The points are used to mark the squares either as 'occupied' or 'empty',

depending on whether they contain points or not.
4. Every possible combination of 3 arrows is generated.

For each combination:
4.1 For all 3 projections, the occupied space is

calculated. It needs to be greater than 30%.
4.2 The occupied space in all other quadrants 0.2m away

from the axis is calculated. It needs to be empty,
because we should have no points behind a wall.

4.3 If both requirements are met, the intersection is
likely to be a corner. Its score is computed using
the lowest occupation we get from the 3 projections.

The occupation requirement of 30% can be set as a parameter. It is the amount in percent a wall needs to
be visible. If set too high, not every corner is detected because furniture might hide most parts of the wall.
If set too low, much more invalid triangles are generated because of furniture.
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One might think that it would be enough to just increase the length of the arrows in a spherical way
instead of trying all possible combinations. This is not possible because some walls are much higher than
wide. The occupation may be 100% if the arrows are perfectly set, but under 30% if the arrows all have
the same length.

Figure 4.7: An example where the occupation is much higher than wide. On the left side are the projected
points, on the right side the occupied squares

The image above shows such a case. If we just iterate from the center in a square or in a circular way, the
occupation is too small at every iteration to reach 30%.

It may be the case that we get multiple possible arrow-combinations for one intersection. Consider
the following wall:

Figure 4.8: An example where two triangles are possible for one intersection

Here, the top-left quadrant should be selected for the given intersection. However, the quadrant on the top
right has a better score if we just compute the occupations. To overcome this issue, we must select the first
quadrant that matches the requirements. For this, the arrow-combinations are generated in a way that they
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grow from the center and as soon as a combination fulfils the requirements, the algorithm quits.

Until now, we assumed that all corners are ’inwards’, which means that the space spanned by the
three arrows is air. This would restrict the possible rooms to convex rooms. In order to support more
types of rooms, the algorithm is extended to detect also outward-triangles. The following image shows the
difference between outward- and inward-triangles:

Figure 4.9: A room with inward-triangles in orange and outward-triangles in blue.

Outward-triangles have the unique property that one cluster is inverted. Instead of having points between
two arrows, it has points on the opposing side. In the example above, the inverted cluster is the floor-cluster
for the two outward-triangles in the middle.

The algorithm is very slow when executed as described above. It has to check every possible arrow-
combination for a high amount of possible cluster-combinations. The following tweaks were made to
increase the speed:

1. The three clusters that are tested for a triangle need to be close to each other. For this, each cluster
has to be close to at least one of the other two. To achieve this, the marker-points are used to compute
the distance from one cluster to another. The minimum required distance is set to 0.5m and may be
increased up to infinity.

2. Large clusters result in substantially more arrow-combinations. To overcome this, the algorithm
uses a limit for the maximum arrow-length. This also allows us to skip points during the projection
to 2 dimensions that are beyond the limit. The maximum possible arrow-length is set to 5m and may
also be increased up to infinity.

3. During the combination of arrows, the arrows are not increased linearly. The further away from the
center, the less precision is needed for the arrows.
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4.2.3 Second part of Algorithm 2, triangle linking
After the triangles are generated, they need to be linked to create a closed room. The following two images
show the generated triangles in orange and the linked triangles in green.

(a) All generated triangles (b) Found set of linked triangles

The main challenge is to find a set of triangles such that they all fit together. For this, the initial idea was to
start at the floor cluster and find a closed circle of triangles. After a circle is found, every two adjacent
triangles are part of a wall cluster. Those wall-clusters are then processed the same way as the floor cluster.
The problem with this approach is that there may be multiple possible circles in the floor cluster. We may
start with one circle, process some walls until we later find out that the floor circle was wrong. We then
need to undo every calculations we made so far and start with the new floor-circle. The following image
shows a possible wrong circle in orange and the correct one in green:

Figure 4.11: Two closed circles of triangles. The green one is preferred.

By just looking at the floor cluster, it is impossible to see which closed circle is the right one. The wardrobe
could also be a wall going to the ceiling. In this case, the red circle would be correct. Of course, also in
other clusters we might take a wrong circle and have to undo all calculations we made after choosing the
wrong circle.
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The solution to this problem is a new approach which operates on the triangles instead of the clus-
ters. It uses the fact that every triangle in the result has 3 arrows that need to be linked. It works as
follows:

Algorithm 2: Triangle linking
1. For every triangle, possible 'followers' are determined for each arrow.

These are triangles that have 2 clusters in common and the two arrows
resulting from the intersection line must be opposing.

2. Triangles that have no followers for one or more arrows are
excluded from further processing.

2. Every triangle has 3 variables 'chosen' which define the
chosen follower for each arrow. These are set to -1 (undefined)
in the beginning.

3. The algorithm starts with the first triangle in the list and
starts the recursion described in step 4.

4. The current triangle tries possible followers for each arrow.
It starts with the first arrow and sets the first possible follower.
It also sets the corresponding arrow of the follower to itself.
It then starts the recursion (4.) with the follower-triangle.
The recursion ends with 'false' when:
- The follower triangle had already set another triangle
to the corresponding arrow.

- The follower triangle tried all possibilities and
nothing worked.

The recursion ends with 'true' when:
- Every arrow has a follower.

If the recursion ends with false, all arrows that were set during the process
are reset to -1.

The sorting of the possible followers is very crucial for the success of this algorithm. It may be the case
that multiple results are possible, but some are more accurate than others. The following image shows a
simple case where two different outputs are possible:

Figure 4.12: A Room from above, two possible closed circles

Triangle 2 may be linked to triangle 3 or triangle 7. Depending on the order of the followers ({3, 7}) of
the downward arrow of triangle 2, the linking algorithm will output either circle 1 or circle 2. Triangle 3
should have a higher priority because it is closer to triangle 2. This applies in most cases and that is why
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the algorithm uses mainly the distance to the followers to sort them. However, there are cases where this
does not work. One example is showed in the image below.

Figure 4.13: Room from above with an additional triangle

It is the same room, but we moved the chimney a little to the top. Because of that, an additional triangle is
found by the triangle finding algorithm. It exists because the wall between triangle 4 and 5 might be longer
and the missing part between triangle 4 and 9 is just occluded. When starting at triangle 1 and searching
for a follower in the left direction, the triangle 9 is closer to triangle 1. This gives triangle 9 a higher
priority and thus it is chosen instead of triangle 2. To overcome this issue, the algorithm uses two tweaks:

1. Followers close to each other are sorted according to their score instead of their distance. This
ensures that bad triangles generated from walls further away are not selected first.

2. The algorithm uses a mechanism called ’arrow limitation’. The idea behind it is that triangles
must not look for followers further away than the limitation. This limitation is set when another
triangle is in the way and has the same arrow-direction (instead of being opposing, so basically an
’anti-follower’). In the example above, triangle 9 would be limited by triangle 4 and thus not link to
triangle 5.

But the limitation is not always correct because it could be from furniture or invalid walls. In the
example above, the right direction of triangle 2 is incorrectly limited by triangle 9. This means
the algorithm should still be able to go beyond the limitation if no other options worked. This is
implemented in the sorting of followers. Followers that have for at least one arrow only followers
behind the limitation get the lowest possible priority. In the example above, triangle 9 has for
the downward arrow only followers past the limitation (triangle 5 is past the limiting triangle 4).
Because of this, it gets the lowest possible priority for triangles that want to link to it (e.g. triangle
1).

The arrow-linking algorithm excludes most furniture by default. As soon as the furniture does not fully
link to the contours of the room, it is automatically excluded. There are cases however where furniture may
be included into the result. The following image shows such a case, it was already shown in Section 4.1 at
the beginning of this chapter.
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Figure 4.14

Both cases are very similar, except for the fact that the wardrobe doesn’t go up to the ceiling. With
the triangle-method, the algorithm is able to model the wardrobe and will include it into the result. To
avoid this, we must study the difference between both cases and adapt the algorithm accordingly. Two
observations and solutions are given below:

1. One observation is that the space above the wardrobe is empty. It would be possible to voxelize the
space, recognize the air above the wardrobe and exclude the wardrobe-clusters.

2. Another observation is that the wardrobe links an outward-triangle at the bottom to an inward-
triangle at the top, while the chimney links two outward-triangles. We can take advantage of this by
limiting the followers of the arrow perpendicular to the inverted cluster of outward-triangles to only
outward-triangles.

The algorithm uses the second option which only works on the triangles and doesn’t require additional
data structure. Basically, this approach excludes the remaining furniture by making sure that every part
that consists of an outward-triangle goes straight through the whole room.

4.3 Ideas for Algorithms that did not work
A straightforward idea one might think of when it comes to determine whether a given point belongs to
furniture or to a contour is to check whether the point is rather on the inside of the whole point cloud or on
the edge. This approach did not work out because the furniture occludes parts of the walls. In the end, in a
point cloud which is taken from a laser scanner, every point lies on the edge of the point cloud. This is
because every point is at a location where the laser had to travel furthest w.r.t. a specific direction. So, the
point cloud is like a highly deformed sphere.
Another idea would be to send virtual rays from the scanner location through each cluster. If the ray hits
another cluster behind it, the current processed cluster would likely belong to furniture. If the ray does not
hit another cluster within a reasonable distance, it would suggest that the current processed cluster is a
wall, ceiling or floor. This works only in convex rooms and would thus highly limit the possible rooms. As
soon as we have a concave room, we would potentially classify a wall as furniture.
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Results

This chapter shows how the final algorithm performs on different point clouds. In chapter 4, two different
algorithms were provided for the transformation of the clusters to a mesh. The final algorithm which is
used for this results is the second one that works with triangles. The complete algorithm is shown below in
a flowchart:

Figure 5.1: A flowchart of the complete process.

26
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The quality of the output and the runtime are very dependent on the parameters that can be set by the user.
The most important ones are:

1. PCA radius

2. Maximum wall-irregularities

3. Merging parameters

4. Minimum required covered area for clusters in triangle finding

The first three parameters are responsible for the clustering. A bad clustering may lead to missing triangles
which leads to a bad output, or too many triangles which slows down the speed and may also lead to a bad
output. The last parameter is responsible for the triangle finding. By default, it is set to 30% which means
that a wall must be visible for at least 30% in order to get reconstructed. If set too high, some important
triangles might not get detected. On the other hand, if set too low, too many triangles corresponding to
furniture are generated which could lead to a bad result.

For the following experiments, the same parameters were used for all point clouds for better comparison.
However, it would be possible to slightly increase the quality of the output and the speed by adapting the
parameters.

The rest of this chapter contains two sections, one which shows the quality of the results and one
which shows the runtime of the algorithm.

5.1 Quality of the results

5.1.1 Synthetic point cloud 1 - Living room

Figure 5.2: Living Room

This room was downloaded from ”https://casual-effects.com/data/”. It
is available under the ”CC BY 3.0” License and was created by
Jay.

After downloading, the room was converted into a .ply-file which contains
only the mesh of the room. This mesh was then transformed into a point cloud
using the algorithm mentioned in Chapter 1. The room needed to be captured
from two scanner locations because there exists no scanner location such that
all walls are present with only one scan. The reconstructing algorithm is not
able to infer walls that are completely missing. The point cloud contains 2M
points. The following images show the reconstruction results:

(a) Input point cloud (b) Input point cloud (indoor)
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(c) Clustering (d) Clustering (indoor)

(e) Found triangles, before exclusion (f) Found triangles (indoor)

(g) Reconstructed room (h) Reconstructed room (indoor)

5.1.2 Real world point cloud 2 - CGG Room 104
This room was captured using a real laser scanner called ”Leica Cyclone FIELD 360”. It is an office room
at the university of Bern.

The original point cloud contains 11M points, but the computer that was used for the experiments
was not able to handle the point cloud. This is why the point cloud was simplified to 8M points for the
experiments.

The following images show the reconstruction results of this room:
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(a) Input point cloud (b) Input point cloud (indoor)

(c) Clustering (d) Clustering (indoor)

(e) Found triangles, before exclusion (f) Found triangles (indoor)

(g) Reconstructed room (h) Reconstructed room (indoor)
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5.2 Runtime of the algorithm
This section shows the runtime of the algorithm. The experiments were done on a Windows 10 computer.
Its main components are an ”Intel Core i7-6700K” processor running at 4GHz and 16GB Ram.
The runtime is shown for each time-consuming step of the algorithm in the chart below:

Figure 5.11: The runtime in seconds for each point cloud

The runtime of the algorithm depends mainly on the following two factors:

• The size of the point cloud

• The number of planar surfaces

The size of the point cloud has a huge impact on the runtime of the clustering and the runtime of the
triangle finding. As for the clustering, the algorithm has to compute more PCA-values, has to consider
more neighbors for the PCA and has to iterate over more points during the generation of clusters. For the
triangle finding, it has to project more points to 2 dimensions. The number of planar surfaces in the room
has an impact for the triangle finding algorithm. More planar surfaces will generate more clusters and
because of this, the triangle finding algorithm has to try out substantially more cluster-combinations.
In the chart above, the difference in the runtime between the two rooms comes mostly from the difference
in the size of the point clouds.
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Conclusion and Future Work

6.1 Conclusion
In this thesis, we explored the problem of reconstructing a (non-empty) room from a point cloud. In the
related works, we saw that this subject is already well explored and that there exist multiple different
approaches to this challenge. Although they vary in many aspects, they are all able to reconstruct interiors
in some way. This work uses a new approach that operates on the corners of rooms. The corners are found
by intersecting planes that are found using a new clustering algorithm. The clustering algorithm is very
customizable and may be adapted to almost all possible rooms. However, this also makes it more prone to
errors, because wrong parameters may lead to a bad clustering, which inevitably leads to a bad output.

6.2 Future Work
The current algorithm is limited to corners that can be represented by triangles. While this is the case
for most corners in indoor environments, there still exist rooms that contain corners with more than
3 outgoing edges. One example would be a roof that is formed like a pyramid. There, the highest
point is an intersection of 4 planes and has 4 outgoing edges. In the future, the algorithm could be
extended to work with corners that have more than 3 outgoing edges. This task is not trivial because of pos-
sibly existing furniture. A corner with 4 edges may also be created by 3 wall-planes and one furniture plane.

Another extension for the algorithm would be a detection for windows and doors. This could be done by
implementing a raytracing algorithm as done in [2], [4], [12], [15], [13], [7], [20]. Other works that do
not use some kind of raytracing are either only able to detect doors and/or are less reliable. Note that a
raytracing-algorithm requires knowledge of the scanner position(s).

The algorithm is only able to process a single room. The user has to manually capture and put mul-
tiple rooms together. The alignment of multiple point clouds from different scanner locations is already a
well-studied topic and called ”registration”. In the future, the algorithm could be improved to accept a reg-
istered point cloud of a whole building and reconstruct it. However, this is not a trivial task in combination
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with diagonal ceilings and multiple ceiling heights per room. The works described in Chapter 2 that are
able to process whole buildings all assume horizontal floors and ceilings.

The algorithm reconstructs rooms from point clouds with no additional information. It was already
mentioned in Chapter 1 that this is on one hand beneficial because the algorithm doesn’t require more
information to work properly. On the other hand, more information could be used to improve the output.
Possible additional inputs could be:

• Point colors

• Point normals

• Scanner position(s)

• Point cloud of adjacent rooms

The point colors could be used to improve the clustering by assuming that points with the same colors are
more likely to belong to the same cluster. The point normals could also be used to improve the clustering.
The scanner position(s) could be used to reliably detect windows and doors. The point clouds of adjacent
rooms could be used to detect walls that are more occluded than 70%. In the adjacent room, the wall may
be less occluded and this information could be used.
For the point colors, point normals and point clouds of adjacent rooms, the algorithm could be build such
that it accepts those inputs to improve the output, but doesn’t require them.
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Khoshelham. Door recognition in cluttered building interiors using imagery and lidar data. volume
XL-5, 06 2014.

[35] B. Quintana, S. A. Prieto, A. Adán, and F. Bosché. Door detection in 3d colored laser scans for
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