
Iterative local remeshing for
locally-injective deformations

Master Thesis

Antoine Demont

University of Fribourg

May 2024

Abstract

To run simulations or model three-dimensional objects, we need a way to represent them.
This is achieved using a mesh, whose vertices collectively form the shape of the object. When
subjected to deformations, meshes can develop degenerate or inverted elements. To address
this issue, we perform remeshing on the represented object, which can be done either globally
or locally. Global remeshing generates a new mesh that is best suited to the deformed object,
whereas local remeshing focuses on identifying and improving the critical elements near the
problem areas. In this work, we present an implementation of a local remeshing algorithm
for locally-injective deformations, in which each remeshing operation can be reverted. This
allows us to restore the mesh to its initial state and topology after any deformation.The
remeshing process involves identifying the problematic elements and addressing each through
four iterative passes: topological, contraction, insertion, and smoothing pass. Each pass aims
to enhance the mesh quality through multiple techniques such as edge and face removal, edge
contraction, vertex insertion, or smoothing.

Prof. Dr. David Bommes, Computer Graphics Group, University of Bern, Supervisor Valentin
Nigolian, Computer Graphics Group, University of Bern, Assistant

1

Contents

1 Introduction 4

2 Related work 5
2.1 World space and material space . 6
2.2 Types of Meshes . 6
2.3 Hill climbing algorithms . 7

3 Mesh deformations 8
3.1 Mesh evaluation . 8

3.1.1 Triangular meshes . 8
3.1.2 Tetrahedral meshes . 9

3.1.2.1 Computing the Jacobian . 9
3.2 Bad elements . 10

4 Remeshing 12
4.1 General remeshing algorithm . 12
4.2 Control mesh . 13
4.3 Triangular meshes . 13

4.3.1 Topological pass . 13
4.3.2 Insertion pass . 14
4.3.3 Smoothing pass . 15

4.4 Tetrahedral meshes . 16
4.4.1 Topological pass . 16
4.4.2 Insertion pass . 18

4.4.2.1 Chebyshev Center . 19
4.4.2.2 Insertion algorithm . 19

4.4.3 Smoothing pass . 21
4.5 Complete algorithm . 22

5 Results 24
5.1 Triangular meshes . 24

5.1.1 Stretch . 25
5.1.2 Compress . 25
5.1.3 Finding the right threshold . 26

5.2 Tetrahedral meshes . 27
5.2.1 Performance of passes . 27
5.2.2 Twist . 28

5.2.2.1 Influence of the Energy Threshold 29
5.2.2.2 Influence of the Timestep Size . 30
5.2.2.3 Handling greater deformations . 32

2

CONTENTS 3

5.2.3 Stretch . 32
5.2.3.1 Influence of the Energy Threshold 33
5.2.3.2 Influence of the Timestep Size . 34
5.2.3.3 Handling bigger deformations . 36

5.2.4 Impact of the control mesh . 37
5.2.5 Reverse deformation . 37

6 Conclusion 38
6.1 Weaknesses and future work . 38
6.2 Use of AI tools . 39

1
Introduction

At first, the process of making cartoons consisted of drawing successive pictures and sequencing them to
create the illusion of movement. Immobile elements could be reused between frames, but any element
in motion had to be redrawn for every movement. Once computer-generated images and 3D modeling
came forth, following this method would be naive and time-inefficient. In an animated movie, it would be
prohibitively expensive for an animator to remodel a character each time the character moves a finger or
opens their mouth to speak. Fortunately, unlike static drawings, three-dimensional objects can be altered
by manipulating their geometry. This introduces the concept of mesh deformation, where we alter the
shape of a 3D object by moving the vertices that compose it.

Say we want to perform a physical simulation of an iron bar bending. To represent it, we use a
tetrahedral mesh, which will hold data about both the surface and the inside of the object. As the bar bends,
the vertex distribution will stray from its initial representation. This could cause some of them to create
tetrahedra of bad quality or inverted elements. If we were to use the mesh to compute physical properties,
having such irregularities could not translate from the simulation to the real world and would inevitably
produce incorrect results. So, we observe that the space of possible deformations is constrained by the mesh
used. To mitigate it, we need to operate on the mesh with the intent of matching more closely to the new
shape of the object. This operation is called remeshing. In this project, we will present an implementation
of a local remeshing algorithm for locally-injective deformations. Meaning it is responsible to, in a first
step, identify the conflicting elements of the mesh, then operate on the mesh to either remove them or
increase their quality to an acceptable level for each one successively. Lastly, any remeshing operations or
deformations on the mesh can be reverted to a previous state.

In Chapter 2, we will first introduce the process to ensure bijection on the operations as well as the
types of mesh used in the project. We will explain the concept of hill climbing algorithms and then, in
Chapter 3, present how to grade mesh quality during deformation. In Chapter 4 we go into more detail
about the implementation of the algorithm in both two and three dimensions. Finally, in Chapter 5, we
evaluate its performances on meshes subjects to varying deformations along with discussing the optimal
setting of parameters.

4

2
Related work

In this chapter, we will briefly present the paper we based this project on, as well as discuss the work
related to it. This contains the topic of remeshing, the introduction of a different space mapping for meshes,
the two types of mesh used for object representation and the concept of hill climbing methods.

This project is based on the work of Wicke et al. [12], who describe the implementation of a dynamic
local remeshing algorithm and its use in physics-based simulations of elastoplastic materials.

Remeshing is a wide field, nonetheless, we can identify two main approaches to the problem: global or
local remeshing. The first consist of remeshing the entire domain when critical conditions are met. This
approach is used in the work of Bargteil et al. [3] as well as Wojtan and Turk [13]. A disadvantage to this
way of tackling remeshing is, that regardless of the quality of the ”good” elements, the complete mesh must
be rebuilt from the ground up every time it is performed, inducing inefficient operations. This inefficiency
is particularly evident when only a local area of the mesh is in poor condition while the rest remains in
good or acceptable shape. Wicke et al. [12] also state that global remeshing accumulates large numerical
errors in simulations, called artificial diffusion, due to the need to resample physical properties from an
old to a new mesh. By changing completely the mesh at each remeshing step, the diffusion of physical
properties, for example, the transmission of forces, can differ from a natural path due to the changes in the
mesh topology. [12] show in their simulations that some element of the strain field exaggerated plastic-like
behavior of purely elastic objects due to the artificial diffusion.

In the second approach, local remeshing, we aim to identify and replace only the low-quality elements
from the mesh. By minimizing the changes on the mesh, we reduce the artificial diffusion mentioned
before. Since most of the mesh is left untouched, its topology is similar for each deformation step, and thus
the transmission of physical properties flows through more constantly. Being a sum, having as few changes
as possible keeps the artificial diffusion to the lowest. Additionally, with local remeshing, coarsening
the mesh where it is unnecessarily detailed or inversely adding details in smaller parts of the mesh is
automatically done as these regions are more likely to create bad elements. Thus creating a better match
between the shape of the object and the mesh.

5

CHAPTER 2. RELATED WORK 6

2.1 World space and material space
To ensure the bijection of all operations, we copy the mesh into a world space representation and a material
space representation (fig. 2.1). All the deformations of the simulation will be applied in world space
whereas the material space will remain unchanged. Each remeshing operation is applied to both spaces
and has to be valid for each of them. This bijective state guarantees that any operation can be reverted.
Making it possible to reset the world space mesh to its initial state or rest state, simulate elasticity, or any
other temporary deformation. In this regard, this project deviates from the original implementation by
Wicke et al. [12]. The goal of their program was to conduct elastoplastic simulations. An elastic material
will retrieve its original shape after being subjected to a deformation. Being able to revert operations is a
good tool to simulate elasticity. By doing so, we can navigate between a stretched shape of an object and
its rest state by reverting the stretching applied to it. We extended this relation between world space and
material space to other deformations. Rather than simulating physical properties, we split the deformation
into successive predetermined positions and performed the remeshing based on them. With this, we can
extend this method to continuous deformations, where we go through successive positions to reach a final
shape. Here, being able to revert operations allows one to navigate freely between the deformation steps
performed.

Figure 2.1: Relation between material and world space, taken from [12]. Deformations occur in the world
space. Remeshing is performed in both material and world space, allowing to revert deformations to a
previous rest space.

2.2 Types of Meshes
Wicke et al.[12] is using a tetrahedral mesh for the representation of 3-dimensional objects. In this work,
we will adapt their algorithm to both 2-dimensional and 3-dimensional meshes.

For the 2-dimensional representation, we work on a flat triangular mesh composed of a plane tessellated
with triangles. For 3D meshes, the triangles used in 2D are replaced by tetrahedra. A visual comparison of
the two mesh types is shown in figure 2.2. Using a triangle mesh was a stepping stone into the program’s
implementation, hence the use of a simpler planar setting. With more attention to two-dimensional
remeshing, one could extend the 2D implementation to also work with three-dimensional objects similar
to our tetrahedral remeshing algorithm. The difference in dimensions would mean for simulations that an
object represented using a triangular mesh would only be composed of its surface, making it completely
hollow, whereas one using a tetrahedral mesh is filled. Since a 2-dimensional mesh does not have to care
about the inside of the object, it is a more lightweight and simple means of representing it. For more
accurate results, using a 3-dimensional mesh is recommended as it can model different properties between
the surface and the inside of the object as well as the transfer of forces through it.

CHAPTER 2. RELATED WORK 7

(a) A tetrahedral mesh (b) A flat triangular mesh

Figure 2.2: The two types of meshes used in this project. Representing higher-dimension objects (volumes)
requires using higher-dimension primitives (tetrahedra versus triangles)”

2.3 Hill climbing algorithms
The original paper uses a hill climbing method. It involves starting from a current state and iteratively
attempting to achieve the optimal state by consistently taking actions that bring us closer to it. For example,
to find the top of a hill we start from its foot and only take the steps allowing us to reach a higher altitude
until all the steps we can take lead us downwards, meaning we have reached the summit. This is a simple
way of finding an optimum but suffers from one clear flaw: local optima. When taking the curve in figure
2.3 we see that the clear maximum is situated at point C. But if our only knowledge is the gain we get
from our next step, then, starting from A, the first step we take determines whether our efforts are in vain
or lead us to the global maximum. By going in the negative direction of the x-axis we will inevitably reach
the peak B and falsely set it as the maximum. This issue can be mitigated by performing multiple attempts.
To go back to the literal interpretation, we take 100 hikers with us who will help us reach the highest hill in
the region. But if only one hiker reaches the actual maximum, this means that 99 of them did all their work
for nothing. This overhead is something to be tuned to match the need between accuracy and performance.

Figure 2.3: Function with a local (B) and global (C) maximum. During remeshing, with mesh quality A,
we can improve it by performing an operation o1 leading us to B, a local maximum, or an operation o2
leading us to C, the actual maximum. Without knowledge of the future state of the mesh, both operations
are treated as the best solution.

3
Mesh deformations

This chapter presents the different metrics used for evaluating the quality of a mesh and its elements, both
in two and three dimensions. It also illustrates the occurrence of bad elements in a mesh as well as a first
insight into how to treat them.

3.1 Mesh evaluation
For our mesh, we want to have all its elements as close as possible to a reference shape. An element
too different from it is considered to be bad. To quantify the distance distance between them we use the
following methods: For triangular meshes, we adapt the formula from Wicke et al.[12] to two dimensions.
For tetrahedral meshes, we introduce another metric for quality: the symmetric dirichlet energy.

3.1.1 Triangular meshes
In [12], the quality of a tetrahedron is equal to:

6
√
2V

ℓharm
ℓ4rms

(3.1)

with V the volume, ℓharm the harmonic mean of the tetrahedron’s edge lengths and ℓrms the root-mean-
squared edge length. [12] say this measure is bounded in [0, 1], we can assume that negative volumes
are treated as having a quality of 0. A quality of 1 is attributed to an equilateral tetrahedron and 0 to a
degenerate one, where all the vertices are coplanar.
We find a similar approach for triangles in [5] by Freitag. The difference of an element with a reference
equilateral triangle of side length 1 is measured by:

4
√
3A

1∑3
i=1 l

2
i

(3.2)

8

CHAPTER 3. MESH DEFORMATIONS 9

with, similar to eq. 3.1, A the area and li the ith edge of the triangle. Equivalent to eq. 3.1, a quality of 1
means an equilateral triangle and 0 for a degenerate triangle. To detect inverted triangles, we compute the
signed area of the triangle such that any value of A < 0 indicates an inverted triangle.

Figure 3.1: Triangle losing quality. As we deform it, the difference with the reference (in green) increases,
resulting in a lower quality.

3.1.2 Tetrahedral meshes

Edirichlet(t) = ∥Jt∥2 + ∥J−1
t ∥2 − 6,

{
if det(J) > 0,
otherwise,∞

(3.3)

with ∥ · ∥2 the Frobenius norm and Jt the jacobian matrix of the mapping between a tetrahedron t and the
reference scaled by a coefficient of the volume, to reduce the penalty on smaller regular tetrahedra. The
detailed computation of the jacobian is presented in sec. 3.1.2.1. Note that the reference tetrahedron can
be adapted. For example, one could set the reference tetrahedron’s value to the best of the mesh before
any deformation is applied, thus measuring more closely the distortion between the current and the initial
state of the mesh. With this method, a perfect element, meaning an element that has no stretching with
respect to the reference, has an energy of 0. For any other element, we invert the positive value given by
the symmetric dirichlet energy. With this, the bigger the energy, the worse the quality of the element will
be.

Figure 3.2: Tetrahedron gaining energy. As we deform it, the difference with the reference (in green)
increases, resulting in a higher dirichlet energy.

3.1.2.1 Computing the Jacobian

To compute the Jacobian Jt of tetrahedron t, we refer to the work of [6]. Given a map u⃗, we take a⃗i the
vectors forming the columns of the Jacobian matrix J . We then set the dual basis b⃗k = a⃗i × a⃗j , such that
i, j, k are a cyclic permutation of the 3 columns indices from J . With it we obtain J TJ =

∑
i |⃗ai|2 and

δdet(J)
δa⃗i

= b⃗i.

CHAPTER 3. MESH DEFORMATIONS 10

Figure 3.3: Taken from [6], ”On each simplex the map u⃗(x⃗) is affine and is entirely defined by the position
of the vertices of the domain simplex {x⃗i} and its image {u⃗i}.”

3.2 Bad elements
Now that we can identify bad elements in a mesh, we will discuss when and how those can appear. In
figure 3.4a, we see that as we apply a force to the mesh, some of the vertices are getting closer to each
other. Continuing this deformation without any remeshing and restriction will inevitably lead to some
inversions in the geometry, producing visual artifacts during render or inaccurate simulations. Since
we move elements of the mesh without constraints, the vertices of some elements can move past their
neighbors, first creating degenerate elements and then inverted ones. By performing remeshing operations,
we aim to keep the shape of the object but change the topology of the bad elements to stay within acceptable
quality values. Another option would be to limit the vertices’ movements to avoid creating low-quality
elements but this approach would mean that some deformations could not be applied to the object. Since
some would inevitably create low-quality elements on the mesh.

CHAPTER 3. MESH DEFORMATIONS 11

(a) Mesh with bad elements. An external force (in gray) is applied to the mesh, compressing the top boundary and its
neighboring triangles.

(b) Same mesh after local remeshing on the red elements.

Figure 3.4: Removal of low-quality elements induced by a force applied to the top boundary of the mesh
(gray arrow). Elements of lower quality are highlighted in red and orange.

4
Remeshing

Chapter 4 covers the remeshing algorithm as well as its implementation in two and three dimensions.

4.1 General remeshing algorithm
The overall operation of the algorithm, presented in alg.1, goes as such: We begin by assessing the mesh
quality using formulas from Chapter 3 to analyze each element. If an element’s quality falls below an
empirically set remeshing threshold qmin, we add it to a list of candidates for remeshing. After identifying
all critical elements, we iteratively improve each one. The remeshing is composed of three sub-parts, in
order the Topological, Contraction, Insertion and Smoothing passes. As they are complex operations that
need an introduction, we will first present each of them before discussing the complete algorithm (alg. 9).
After each mesh operation, we evaluate the quality of the new or altered elements. Based on it, we can
decide whether to accept or revert the operation in case the quality of the resulting mesh is lower than of
the one before.

Algorithm 1 Loop: The overall remeshing algorithm

Require: M a mesh to improve
B ← {}
for all t ∈M do ▷ Find bad elements

q ← ComputeQuality(t)
if q < qmin then

B ← B ∪ t
end if

end for
while B !empty do ▷ Improve mesh

e←Worst element of B
ImproveElement(e)

end while

12

CHAPTER 4. REMESHING 13

4.2 Control mesh
As presented in chapter 2, we represent the object in two distinct spaces called world and material space.
All deformations occur on the world space representation whereas, in material space, only the topological
changes are applied. This method ensures bijection on all mesh operations. When we perform a remeshing
step on the world mesh, the operation needs to be validated on the control mesh in the material space. As
illustrated in fig. 4.1, after an operation is performed we iteratively check whether it creates a bad element
anywhere in the control mesh. In this case, we reset the material space mesh to its previous valid state or
update the control mesh if all elements are of sufficient quality. With this, we ensure that any operation is
valid in both spaces and that each modification made on the mesh can be reverted to a previous state.

Figure 4.1: Flow diagram for control mesh validation. Each operation in world space has to be validated
for every element in the material space before being applied to the mesh.

4.3 Triangular meshes
This section describes the implementation of the topological, insertion and smoothing passes with two-
dimensional meshes.

4.3.1 Topological pass
In three-dimensional meshes, Wicke et al.[12] use this pass to remove edges and faces of bad quality. We
adapted it to two-dimensional meshes while keeping this idea of low-quality element removal. All without
being redundant with the contraction pass presented in alg. 9. To do so we used the edge flip. Shown in
fig. 4.2, we see that by flipping an edge both of the bad-quality faces disappear to leave only elements
of acceptable quality. With a similar mesh operation as in [12], the algorithm (alg. 2) for the topological
pass goes as follows: We take the edges of A, the list holding the elements whose quality we want to
improve. For each of them, a flip is performed and we check whether the quality of the neighboring triangle
improves. Note that boundary edges cannot be flipped as it would modify the shape of the object rather

CHAPTER 4. REMESHING 14

than its topology only. For all triangles whose quality improved, we add them to a set of new triangles,
even if their quality is above the quality threshold. This set can then be processed in another pass of alg. 9.

Algorithm 2 Topological pass on triangular meshes

Require: A a set of triangles of the mesh
function TOPOLOGICALPASS2D(A)

changed← false
E ← set of all edges of triangles in A
Anew ← {}
for all e ∈ E do

if e still exists then
attempt to flip e ▷ t1, t2 created by flipping edge e
Anew ← Anew ∪ t1, t2
changed← true
if Quality(t1, t2) did not improve then ▷ Ensure mesh improvement in world space

revert operation
end if

end if
end for
return the surviving elements of A ∪Anew and changed

end function

(a) 2 triangles of bad quality

(b) 2 better triangles after edge flip

Figure 4.2: Improving topology by edge flip

4.3.2 Insertion pass
For the two-dimensional insertion pass, presented in alg. 3, the idea is similar to its original three-
dimensional implementation. We first attempt to dig a cavity, which is in turn filled with new elements of
better quality. The key part of this algorithm is cavity digging, as filling it up simply consists of connecting
the new point p located at the centroid of the triangles of A to the edges of the previously dug cavity. To
find which elements belong to a cavity, the FindFaceWithP function is inspired by the Bowyer-Watson
algorithm [2]. We start from the first element of the cavity, t, and mark it as visited. Then, we iterate
through its neighbors and check whether, one they never have been visited, and two their circumcircle
contains the new point p. If this is the case, we add this neighbor to the cavity and recursively treat its own
neighbors as candidates for the cavity. The search ends when no new circumcircle contains p. This process

CHAPTER 4. REMESHING 15

is illustrated in fig. 4.3a. Once completed, the result of the smoothed-out vertex p added to the mesh can
be seen in fig. 4.3b.

Algorithm 3 Insertion pass on triangular meshes

Require: A, a set of triangles of the mesh
function INSERTIONPASS2D(A)

Anew ← {}
for all t ∈ A do

p← centroid of t
D ← FindFaceWithP (D, t, p)
for all f ∈ D do

deletef ▷ creates a cavity
end for
for all e ∈ cavity’s edges do

add face f ′ with p, e
Anew ← Anew ∪ f ′

end for
Smooth(p)

end for
return the surviving elements of A ∪Anew

end function

function FINDFACEWITHP(D, f, p)
if visited(f) or !contains(p) then

return
end if
visited(f)← True
D ← f ▷ we add f to the cavity
for all adj ∈ adjacent faces do

FindFaceWithP (D, adj, p)
end for

end function

4.3.3 Smoothing pass
The last pass to discuss is the smoothing pass. In this part of the program, we attempt to regularize the
point distribution through the mesh. For the triangular mesh implementation, we kept it simple and made
it so that any point p to be smoothed is moved to the average position of its neighbors.

CHAPTER 4. REMESHING 16

(a) Mesh before insertion pass. (b) Result of insertion pass.

Figure 4.3: 2D Cavity building with successive circumcircles for the insertion pass. In green the new
vertex added to the mesh to remove the bad triangle in red. After removal, the new point is connected to
the cavity and smoothed.

(a) Center vertex offset from its neighbor’s average (b) Same mesh after smoothing

Figure 4.4: Vertex smoothing on 2D meshes

4.4 Tetrahedral meshes
This section describes the implementation of the topological, insertion and smoothing passes with tetra-
hedral meshes. For clarity, all the material space checks presented in section 4.2 are omitted. In reality,
for each mesh operation presented below, a validity check on the control mesh is performed to ensure
bijection.

4.4.1 Topological pass
In the topological pass, the aim is to perform flips such that we can transform edges into faces or vice
versa. These operations, illustrated in fig. 4.5, can be described as follow:

• 2-3 flip: Transforms a face between 2 tetrahedra into an edge between 3 tetrahedra.

• 3-2 flip: Reverse operation to the 2-3 flip, transforms an edge between 3 tetrahedra into a face
between 2 tetrahedra.

• Multi-face removal: Generalization of the 2-3 flip, transforms n faces into an edge incident to
n+ 2 tetrahedra.

CHAPTER 4. REMESHING 17

• Edge removal: Generalization of the 3-2 flip and reverse operation to the multi-face removal,
transforms an edge incident to n tetrahedra into n− 2 faces between 2n− 4 tetrahedra.

• 2-2 and 4-4 flips: Switches the direction of a group of tetrahedra, this operation is used in [12] but
not in this implementation as they were used as boundary operations and our handling of surface
elements differed from the original implementation.

Figure 4.5: Mesh operations used, taken from [12]

A pass, described in alg. 4, tries to remove each edge and face of a tetrahedron. To remove an edge e,
it goes through the steps of alg. 5. We first compute the one ring around e. It is composed of the vertices
adjacent to e without being connected to the edge. Shewchuk [10] mentions that a ring size greater than 7
vertices rarely improves the mesh quality and is not worth the processing cost. After splitting e, we must
find the collapse direction resulting in the smallest local energy. To do so, we collapse the newly added
vertex in the direction of all the vertices composing the one ring around it and compare the results, storing
the best halfedge to collapse. In the end, we ensure that the energy of the mesh around e has improved. If
that is not the case, the operation is rolled back. As for the face removal, we compare the resulting energy
between a simple 2-3 flip and the multi-face removal. If neither operation improves the mesh energy, none
is chosen. The multi-face removal, described in more detail in [10], consists of finding the faces that are
sandwiched between two vertices a and b. From [10], ”[...] a triangular face f is sandwiched between a
and b if the two tetrahedra that include f are conv(f ∪ a) and conv(f ∪ b)”. With the operator conv(f ∪ v)
giving the tetrahedron composed of the vertices of the triangular face f and a vertex v of the mesh. Once
we have found all the sandwiched faces, they are removed via a combination of 2-3 and 3-2 flips.

CHAPTER 4. REMESHING 18

Algorithm 4 Topological pass on tetrahedral meshes

Require: A, a set of tets of the mesh
function TOPOLOGICALPASS(A)

Anew ← {}
for all t ∈ A do

E ← edges of t
F ← faces of t
for all e ∈ E do

if e exists then
changed← RemoveEdge(Anew, e)

end if
end for
if changed then

continue
end if
for all f ∈ F do

if f exists then
changed← RemoveFace(Anew, f)

end if
end for

end for
return the surviving elements of A ∪Anew

end function

Algorithm 5 Edge removal on tetrahedral meshes

Require: added, a set of tets, e, the edge to remove
function REMOVEEDGE(added)

m← OneRing(e)
qold ← Quality(mesh)
if m > 7 then

return ▷ From [10], after m > 7 the mesh rarely improves
end if
v ← SplitEdge(e)
h← FindCollapseDirection(v) ▷ Find the halfedge to collapse giving the best quality
Smooth(v)
if Quality(mesh) < qold then

rollback operation
return False

end if
added← tets around v
return True

end function

4.4.2 Insertion pass
As described above, the insertion pass consists of digging a cavity and filling it up anew with elements
of lower energy. This allows us to break from local optima that could be reached in the other passes by

CHAPTER 4. REMESHING 19

adding new tetrahedra. With it, we create a more drastic change in topology which opens up a new set of
remeshing opportunities that could not have been reached with the previous remeshing operations. To dig
the cavity, we adapt the concept of galaxies presented by Hinderink and Campen[7]. The reasoning behind
this choice was the complex original implementation from [12] who used a graph-based representation
of the mesh to identify cavity elements. With the data structure used in this project, following the same
approach would have been overtly complex and would not use the more recent and easier approaches at
our disposal. Starting from a list of tetrahedra of high energy, we construct a set of stars, an aggregation of
mesh elements, united in a common galaxy. To build them, we use their chebyshev center.

4.4.2.1 Chebyshev Center

The chebyshev center [4] of a star is the center of its largest inscribed sphere. In fig. 4.6, we can see its
use to determine whether a cavity is star-shaped. Star-shapedness consists in the capacity for a cavity to
be filled with tetrahedra without them overlapping each other or the existing mesh around the cavity. To
find the chebyshev center, we take the boundary of the cavity and compute its inscribed sphere. A strictly
positive value for r means the cavity is star-shaped. However we set a threshold for the radius to avoid
filling the cavity with too small tetrahedra, at risk of being degenerate or of high energy.

Figure 4.6: Star-shapedness tested with the chebyshev center, taken from [7]. A cavity is star-shaped if it
holds an inscribed sphere of radius r > 0 with chebyshev center x0.

4.4.2.2 Insertion algorithm

The insertion algorithm is composed of three substeps: the cavity digging, the cavity filling, and a
topological pass. For the first step (alg. 6), from each tetrahedron in A we start growing a star. This means
that at first, each star has a size of one. To add to it, we want to add the neighboring tetrahedron that is the
most likely to maintain star-shapedness. [7] use the following equation (eq. 4.1): Among the faces of the
tetrahedra from a star S, we search the face whose incident tetrahedron is the least likely to break the star
conditions, with nf the normal of a triangle f , af a point on its image and x0 the chebyshev center. The
candidates f∗ are presented as a sorted list, where we drop any element already contained in a star. If the
end of the list is reached, then no additional element is joined to the star and the procedure ends.

f∗ = argmax
f

nT
f x0 − nT

f af (4.1)

Once the galaxy is fully computed, we remove all the tetrahedra contained in the stars, hollowing out the
mesh.

CHAPTER 4. REMESHING 20

Algorithm 6 Cavity digging on tetrahedral meshes

Require: A, a set of tets from the mesh
function CAVITYDIG(A)

N ← 5
G← {} ▷ Empirically set, controls the size of the stars
for all t ∈ A do ▷ create galaxy

if t /∈ S,∀S ∈ G then
S′ ← {t} ▷ Create new star
do

t′ ← FindNext(t)
S′ ← S′ ∪ {t′}

while StarShaped(S′) and S′ < N
G← G ∪ S′

end if
end for
for all S ∈ G do ▷ dig cavity

for all t ∈ S do
DeleteTet(t)

end for
end for

end function

Once the cavities are hollowed, for each star of the galaxy we add a new vertex at its chebyshev center
and connect the vertices at the boundary of the cavity to this new element. Once the cavity is filled up,
we smooth the created center to set an acceptable starting point for the last step of the insertion pass: a
topological pass on the tetrahedra used to fill the cavity. Finally, if this pass did not improve the mesh
energy, the operation is rolled back to its previous state.

CHAPTER 4. REMESHING 21

Algorithm 7 Cavity Filling on tetrahedral meshes

Require: G, a galaxy
function CAVITYFILL(G)

for all S ∈ G do
c← chebyshev center of S
A′ ← {}
AddV ertex(c)
for all b ∈ boundary faces of S do

t′ ← AddTet(c, b)
A′ ← A′ ∪ {t′}

end for
Smooth(c)
i← 2
do

changed← TopologicalPass(A′)
i← i− 1

while i > 0 and changed
end for
if Quality(G) < qold then ▷ qold is the quality of the galaxy before the pass

Rollback operation
end if

end function

Figure 4.7: Boundary of a cavity (green) with its inscribed sphere and chebyshev center (blue).

4.4.3 Smoothing pass
For the last pass of the algorithm, as presented in alg. 8, we go through all the remaining tetrahedra from
A. In A are contained all the tetrahedra added or altered during the previous topological, contraction,
and insertion passes. In this step, the goal is to smooth out the vertices of the list. To do so, we use the
chebyshev center presented in sec. 4.4.2.1. We treat the neighboring tetrahedra to the vertex v we want to
smooth as a cavity similar to the insertion pass (see fig. 4.8) and move v to the position of the chebyshev

CHAPTER 4. REMESHING 22

center. This pass is the last to be applied to the list A as it expends it exponentially. For each vertex
smoothed, we add its neighbors to A. Even after removing duplicates, this is by far the operation that
changes the list the most and thus impacts performances.

Algorithm 8 Smoothing pass on tetrahedral meshes

Require: A, a set of tets of the mesh
function SMOOTHINGPASS(A)

A′ ← {}
for all t ∈ A do

V ← vertices of t
for all v ∈ V do

N ← neighboring tets of v
qold ← Quality(N) ▷ Calculate energy of tets from N
Smooth(v)
if Quality(v) < qold then

Rollback operation
continue

end if
A′ ← A′ ∪N

end for
end for
return the surviving elements of A ∪A′

end function

Figure 4.8: Boundary (green) used to find the chebyshev center during smoothing pass on a vertex (red).

4.5 Complete algorithm
Now that all of its parts are introduced, we can go through the complete flow of the remeshing algorithm
(alg. 9). We iterate through the list A, sorted based on its elements’ quality which will reduce and expand
at each pass. A contains at first only the element of bad quality we want to get rid of but will vary in size
after each mesh operation. Because as we alter the mesh, we also change the neighbors to the remeshed

CHAPTER 4. REMESHING 23

element, and thus an improvement can be required on those too. Note: A may not only contain elements
of quality below qmin, Wicke et al.[12] mention that their experiences showed some bad elements can
only be improved by also altering their neighbors.

Algorithm 9 ImproveElement: Mesh improvement algorithm

Require: t an element of bad quality, N the number of remeshing iterations
function IMPROVEELEMENT(t)

A← {t}
for i← 0 to N do

do
A← TopologicalPass(A)
if Quality(A) ≥ qmin then ▷ Quality(A) returns the worst element of A

return
end if

while TopologicalPass(A) changes the mesh
A← ContractionPass(A)
if Quality(A) ≥ qmin then

return
end if
A← InsertionPass(A)
if Quality(A) ≥ qmin then

return
end if
A← SmoothingPass(A)
if Quality(A) ≥ qmin then

return
end if

end for
end function

function CONTRACTIONPASS(A)
E ← set of all edges of elements in A
for all e ∈ E do

if e still exists then
attempt to contract e, smooth resulting vertex

end if
end for
return the surviving elements of A and the mesh elements modified by edge contraction

end function

To improve an element t of the mesh, alg. 9 uses an iterative process where a list of elements goes
through a succession of passes to locally improve quality. Note that [12] uses a value of N = 10 but
it was adapted in this implementation due to performance. In the Contraction pass, the idea is to try to
contract each element’s edges to attempt to get rid of those that are close to being degenerated. This pass
was not presented in its own section unlike the others as its implementation is similar regardless of the
dimensionality of the mesh.

5
Results

This chapter presents the experiments run with the algorithm, on two- and three-dimensional meshes, as
well as discusses the results obtained.

5.1 Triangular meshes
In this section, I’ll describe the two experiments made in 2D and show the search for the optimal value of
minimal quality. Mentioning that 2D was the stepping stone into the project and not many experiments
were run. The implementation of the algorithm for triangle meshes served as a stepping stone into
the more complex field of tetrahedral meshes. As such, not much experimentation was run with this
implementation since it served more as a proof of concept. Two experiments were led with the two-
dimensional remeshing algorithm: stretching the mesh and compressing it. In both cases, the goal was
to empirically determine an acceptable value for the remeshing threshold qmin. Each experiment is run
through iterative timesteps, defining the harshness of each deformation step and only the boundary vertices
are moved by the deformation, handling the positions of the rest of them is left to the remeshing. At
each time step, first, the deformation is applied to the mesh, and after this comes a remeshing pass. This
composition can be seen in figure 5.1.

Figure 5.1: Timestep composition

24

CHAPTER 5. RESULTS 25

5.1.1 Stretch
In this first experiment, the rectangular base mesh (fig. 5.2a) is stretched horizontally by a factor of 1.5.
All of the stretching comes by moving the right boundary of the mesh. A real-life representation could
be thought of as the left boundary being anchored and the right being pulled. To approximate physical
properties, the boundaries perpendicular to the stretching direction are bent into a concave parabola as it
would in a elastic deformation. We indeed see in figure 5.2b that most of the low-quality elements and
thus remeshing performed are situated near the deformed parts of the mesh: the top, bottom, and right
boundaries. We can also note some flips as well as additional geometry, meaning that both the topological
and insertion pass influenced the remeshing.

(a) Mesh before deformation
(b) Mesh after deformation and remeshing. The darker an
element, the lower its quality

Figure 5.2: 2D stretch experiment

5.1.2 Compress
In this experiment, opposite to the stretching done before, we compress the mesh by moving the rightmost
boundary to 66% of the initial mesh length. Similar to before, the left boundary stays immobile whereas
the top and bottom boundary are bent to a parabola. For this situation, to simulate the material being
pushed out by the compression, the parabola takes a convex shape. Similar to the stretch experiment, most
of the work is done near the boundaries. We also have a clear show of the work of the contraction pass.
When counting the number of triangles for a horizontal line going through the middle of the mesh, the
number decreases from 20 to 14. This means that the triangles compressed by the moving edge have been
removed by contracting one of their edges during the contraction pass. We can also note that the result of
the remeshing differs significantly between the top and bottom boundaries. This highlights a point, which
will also appear later for the tetrahedral meshes, of the remeshing results depending on initial conditions
and some operations unlocking new possibilities at later timesteps that could be missed without them.

CHAPTER 5. RESULTS 26

(a) Mesh before deformation
(b) Mesh after deformation and remeshing. The darker an
element, the lower its quality

Figure 5.3: 2D compress experiment

5.1.3 Finding the right threshold
This last experiment on triangle meshes was run with the compress setting described above. The goal for it
is to find the best value for qmin, the threshold responsible for adding elements to the list of elements to
be processed in the remeshing pass. We need to fine-tune between a value too low, not allowing enough
remeshing thus not improving mesh quality, and a value too high not realistically achievable triggering
useless remeshing operations without actually improving topology. As presented in section 3.2, the quality
of a triangle ranges between 0 and 1. The compressing experiment was run with a value of qmin from
0.1 to 0.7 with the same number of timesteps in each run. Higher values were not deemed interesting as
they exceeded or were close to the initial mesh quality of ∼ 0.85, thus not being realistically reachable.
Observing the results presented in figure 5.4, we can split them into three categories:

• Close to degeneracy: With qmin equal to 0.1 or 0.2 (first row of fig. 5.4), the threshold is so low that
it accepts almost degenerate element into the mesh. This can lead to the situation where performing
a remeshing worsens the situation as it induces inverted elements faster than the mesh deformation.

• Optimal threshold: For values ranging between 0.3 and 0.55 (middle rows of fig. 5.4) we see that
the remeshing is still capable of maintaining the desired mesh quality even with the deformation at
its maximum. Note that with qmin = 0.4, the threshold is not reached at later stages but still can be
reached for higher values. An explanation can be found in the hill climbing principle. A remeshing
operation could at a time t be seen as the best choice, only to be at a later time t+ n restricting a
more efficient operation. That is why 0.4 still can be included in this category as the threshold is
neither too restrictive nor tolerant but only depends on initial mesh configuration.

• Unreachable threshold: Values ranging from 0.6 and above (last row of fig. 5.4), although the
desire behind them is to maintain high mesh quality, show that there exists a point where this desire
is simply too much and cannot be fulfilled. They, while performing more operations than the other
categories, produce worse results than lower thresholds situated in the optimal category. This is due
to the program trying its best to reach an acceptable mesh quality, performing as many remeshing
steps as possible and diverting from the regular initial mesh. This irregular mesh is more likely to
create even worse irremovable elements after the next deformation step.

CHAPTER 5. RESULTS 27

From the optimal threshold category, we can determine that a value for qmin near 0.5 is the best choice.
We want the best possible quality with the best performances. With qmin = 0.55, we get closer to the
upper limit and might risk losing the capability to reach it after deformation.

Figure 5.4: Evolution of the quality for different thresholds. The y-axis shows the quality of the worst
mesh element, the x-axis shows the number of mesh operations performed. Two measures are taken per
timestep: one after the deformation and one after remeshing. Deformation often creates near-degenerate or
inverted elements, which can be in turn corrected by remeshing. We also note that increasing the threshold
raises drastically the amount of remeshing operations performed and produces a worse quality than the
more attainable ones.

5.2 Tetrahedral meshes
For 3D meshes, each deformation applied to the mesh is either a twist or a stretch. Our goal through these
experiments is to find an optimal threshold for the energy, evaluating the impact of the timestep size and
deformation intensity as well as the impact of the control mesh.

5.2.1 Performance of passes
Using a hill climbing method with iterative passes means that we have to reject a lot of potential remeshing
operations. This is especially true for the topological pass where there are multiple operations to consider
and to compare. Having a broad choice with only a single chosen option will inevitably result in
computations that were done ”for nothing” as they will not contribute to the remeshing process. Due to

CHAPTER 5. RESULTS 28

the costs in performance, this implementation requires us to adapt the mesh to best suit our experiments
without losing either time or quality. Details of these adaptations are presented in the section 5.2.2.

5.2.2 Twist
This mesh deformation consists of rotating vertices along the z-axis, giving a spiraling look to the base
mesh (figs. 5.5a and 5.5b). Two variants of the deformation were applied. First, a basic one in which
the whole mesh rotates along the axis. Second, one where only the surface vertices were displaced, thus
triggering more remeshing operations as the difference between the surface and inside increases. The
first option was used in most experiments as it is more realistic from a physical standpoint. If in a section
nothing about the deformation is mentioned, assume all the vertices were free of movement. Since we
observed that most of the remeshing was happening near the boundary, we add an additional global
refinement pass on the boundary tetrahedra (fig. 5.5c). This allows for more fine-grain remeshing where it
is needed, without the additional cost induced by refining the full mesh.

(a) Mesh before deformation (b) Mesh after deformation and remeshing

(c) Mid section of the mesh before deformation
(d) Mid section of the mesh after deformation and remesh-
ing

Figure 5.5: 3D twist experiment

CHAPTER 5. RESULTS 29

5.2.2.1 Influence of the Energy Threshold

In this experiment, we aim to find the optimal value for the maximal energy threshold dmax. To do so,
we applied the twist deformation to boundary vertices with increasing leniency towards difference to
the reference regular tetrahedron. Moving only the surface vertices allows for more observations of the
remeshing being performed and thus a better evaluation of the algorithm’s adaptation. We rotated the
boundary points 180° around the axis in 360 timesteps, giving a 0.5° increment per timestep.

In figure 5.6, we observe three categories of results:

1. Unsuccessful remeshing: With dmax = 35, the desired energy is too low and no remeshing step
allows the mesh to go back to this state once the limit is crossed by many elements. In figure 5.6 top
left, we see that the first crossing of the threshold can be recovered like any other value for dmax but
as soon as multiple timesteps are unable to lower the energy it continuously increases in average.

2. Partially successful remeshing: With dmax = 40, we seem to be near the limit of energy the
algorithm can recover from. In the first part, the deformation is salvageable but it reaches a state
from which it is not able to come back, slipping into the first category of unsuccessful remeshing.

3. Successful remeshing: With dmax ≥ 45, each crossing of the threshold is recovered from. With no
sign of slipping into an endless loop of increasing energy.

These results show that a threshold of ∼ 45 is the best choice in this situation. This value is in no way
absolute as it must take into account the severity of the deformation. For more intense deformations, where
greater energies are unavoidable, a dmax of 45 might give results of the first or second category.

CHAPTER 5. RESULTS 30

Figure 5.6: Comparison of energy for different threshold values during the spin. The x-axis represents
the timestep progression, the y-axis shows the deformation energy of the worst element of the mesh. We
observe that setting a value too low (dmax = 40) yields worse results than a higher and more adequate
threshold (dmax = 45). Measures are taken before and after a remeshing step, resulting in the peaks and
dips displayed by the energy.

5.2.2.2 Influence of the Timestep Size

In this second experiment, the goal is to evaluate the impact of the timestep size on performance and
quality of the remeshing. To do so, the twist deformation is applied with different parameters shown in
figure 5.7. For the half turns (rotation of 180°), the number of timesteps ranges from 9 to 1800 and is
doubled for the full turn. This brings us to a rotation angle of 0.1° to 20° per timestep. For experiments
with a low remeshing threshold or high deformation (figs. 5.7a and 5.7d), we get results of the unsuccessful
remeshing category presented in the previous experiment where no matter the number of timesteps it is
unable to recover from the high energy. We see that increasing the number of timesteps does not equate
with better quality. This shows the limitation induced by local optima in hill-climbing methods. Based
on the remeshing choices performed during previous iterations, some largely better options cannot be
performed but are available to the ones who skipped some remeshing steps. In figure 5.7b is shown that the
solution with dmax presented as a partially successful remeshing could be tipped into any other category
based on the number of timesteps, fortifying its position as the limit between them. By increasing the

CHAPTER 5. RESULTS 31

number of timesteps it now falls into the successful category whereas by decreasing it worsens its results.
This highlights the trade-off between performance and quality as this shift in category comes at a great
price in terms of execution time. Using the biggest number of timesteps possible can be used as a good
approximation tool but is not to be treated as a golden rule. In the experiment with dmax = 50 (fig. 5.7c),
it appears that the energy of the worst element, as well as the mesh, seems to plateau below the threshold
with an exponential growth in time required. In this situation, using more timesteps is unnecessary as we
could use the additional time freed by performing more passes of the algorithm, maybe giving an even
better result. This plateau might be interpreted as the last acceptable energy for a tetrahedron. Any higher
energy would trigger the remeshing after the next deformation step, thus bringing its quality below the
threshold again.

(a) Half turn with energy threshold of 35 (b) Half turn with energy threshold of 40

(c) Half turn with energy threshold of 50 (d) Full turn with energy threshold of 80

Figure 5.7: Comparison of execution time (blue), worst element energy (red) and average mesh energy
(green) for varying timestep numbers. The x-axis shows the number of timesteps, the left y-axis the time
in seconds, and the right y-axis the deformation energies

CHAPTER 5. RESULTS 32

5.2.2.3 Handling greater deformations

For this last experiment with the twist deformation, we observe the impact of larger deformations on
the remeshing algorithm. We took the lenient dmax = 50 from previous experiments and 0.5 increment
timesteps. We see in figure 5.8 that larger deformations explode in terms of both energy and time, especially
for the full turn. We notice here the limitations of this implementation as the only way to make bigger
deformations work would be to set a high remeshing threshold that would result in visibly bad tetrahedra,
rendering the remeshing almost useless given that the increase in mesh quality would not be worth the
resources used.

Figure 5.8: Evolution of performance of execution time (blue), worst element energy (red) and average
mesh energy (green) with deformations ranging from 90° turns to 360°, in 90° increments.

5.2.3 Stretch
Similar to the two-dimensional implementation of section 5.1.1, for this mesh deformation the bottom
boundary is pulled down while the sides are bent. This allows to emulate a plastic or elastic deformation
of the object.

CHAPTER 5. RESULTS 33

(a) Mesh before deformation (b) Mesh after deformation and remeshing

Figure 5.9: 3D twist experiment

5.2.3.1 Influence of the Energy Threshold

In this experiment, the mesh is stretched to 1.7 times its initial length with remeshing thresholds equal to
30, 35 and 40. All the runs were performed in 300 timesteps.

Similarly to the spin’s results, we see again in the figure 5.10 the three categories set in the previous
section (sec. 5.2.2.1): unsuccessful, partially successful and successful remeshing.

With a threshold value too low like dmax = 35, the remeshing is not able to keep control of the
deformation, and the energy increases without showing signs of getting back to an acceptable level. When
nearing the optimal value, the energy curve follows the threshold for a while before taking off.

With the results of this second experiment, we can generalize the behavior of the energy curve to
identify whether an arbitrary value for dmax is optimal based on its curve. The procedure would be to start
high and, as long as the curve stays in the 3rd category, lower it until we reach the 2nd category. If we ever
overshoot and reach the 1st one, we then know to increase it again, following some kind of binary search
methodology.

CHAPTER 5. RESULTS 34

Figure 5.10: Comparison of energy for different threshold values during the stretch. The x-axis represents
the timestep progression, the y-axis shows the deformation energy of the worst element of the mesh.

5.2.3.2 Influence of the Timestep Size

In this experiment, we tried stretching the mesh by a factor of 1.7 with varying numbers of timesteps,
ranging from 10 to 1000. In figure 5.11, we see the results with two different thresholds. The first one (fig.
5.11a) takes a voluntarily low threshold to see if we can recover from the deformation with finer timesteps
and on the second (fig. 5.11b) is the value we found to be on the limit of acceptability in the experiment of
section 5.2.3.1.

In the first case, we observe that no matter the amount of timesteps, the algorithm is never able to
reach an energy below the desired value of the energy. The highest numbers of timesteps are closer and
the average mesh energy lower so we can assume that a high number of timesteps is the best choice in
this situation but comes at an exponential cost in performance. If the curve’s dynamics were to continue
with bigger x values, then settling for the smallest time-to-energy ratio would be even more efficient. We
can observe a bump in energy at 200 timesteps. This is another example of a hill-climbing algorithm
deciding on a local optimum leading to worst solutions in the future. Adjusting the timestep size opens
possibilities that smaller or bigger amounts would not offer, thus creating a bump at only x = 200. In the
second case, this variety of available solutions is even clearer. Since we are at the limit of the threshold’s
remeshing trigger, solutions vary greatly from one another based on the timestep size. We see that lower
values yield significantly worse results by crossing too harshly the limit set by the threshold and cannot be
recovered from, triggering remeshing on bigger sets of tetrahedra and increasing time consumption. For
higher values, we do not see a clear favorite in terms of energy or time. We do note that failing to reach the
desired energy results in bigger time requirements. This is due to the implementation of the algorithm,
once we reach an acceptable energy or treat all the tetrahedra of high energy the execution stops without
going through the remaining passes. Failing to treat even one element would result in additional remeshing

CHAPTER 5. RESULTS 35

passes impacting performance.

(a) Stretch of factor 1.7 with energy threshold of 35

(b) Stretch of factor 1.7 with energy threshold of 40

Figure 5.11: Comparison of time (blue), worst element energy (red) and average mesh energy (green) for
varying timestep numbers. The x-axis shows the number of timesteps, the left y-axis the execution time in
seconds, and the right y-axis the deformation energies

CHAPTER 5. RESULTS 36

5.2.3.3 Handling bigger deformations

In this last experiment, we evaluate the remeshing’s capacity to handle greater stretching. Starting from the
default experiment with dmax = 40 and 300 timesteps with a stretching factor of 1.7, we apply stretching
ranging from 1.5 to 2 while adapting the number of timesteps. Failing to do so would be unfair as bigger
deformations would be performed in bigger increments, which we have seen to lower the quality of the
remeshing. The full conversion can be seen in table 5.1.

Stretching factor 1.5 1.6 1.7 1.8 1.9 2
Timesteps 265 283 300 318 335 353

Table 5.1: Stretching factor to timestep relation

Like with the twist deformation (sec. 5.2.2.3) we see that bigger energies quickly go out of control
of the remeshing algorithm, both in terms of quality and performance. An interesting observation is that,
although on average higher, the energy of the worst element of the mesh is lower with a factor of 2 than
1.9. We observe the vulnerability of the algorithm to its preceding operations. In this case, a tetrahedron
might have been altered to lower its energy at a timestep t but the following deformation step created an
even worse element. The inverse interpretation is also possible, by applying a big enough deformation, a
problematic tetrahedron and its neighbors that could not be removed reached a state where the remeshing
operation is possible and improves the mesh quality.

Figure 5.12: Evolution of performance of execution time (blue), worst element energy (red) and average
mesh energy (green) with stretching factors ranging from 1.5 to 2, in 0.1 increments

CHAPTER 5. RESULTS 37

5.2.4 Impact of the control mesh
Bijection of operation is ensured through the existence of both the material and world spaces. Validating
each operation on the material space induces a performance overhead but also limits the range of operations
available to the remeshing algorithm. If the best choice is refused in material space does the quality of the
remeshing suffer from it or is it able to find alternatives to reach the desired energy?

We see in figure 5.13 that for a twist experiment, the version with the material space (in orange) can
reach the same level of energy as the one without it (in blue). Not having this restriction allows for a
quicker recovery but eventually this restriction yields similar results while only using revertible operations.
This means that keeping a stack of the performed remeshing steps and going through it in reverse order
would give us the initial mesh without changes in topology.

We observe here that the only additional cost of using the two spaces is resource-related. Specifically,
it affects memory consumption, as a representation of the mesh is needed in both spaces, and performance,
since each operation must be validated before being applied to the mesh.

Figure 5.13: Evolution of the quality with and without using material space, for the full experiment (top)
and a close view after the trigger of the remeshing (bottom). In orange the algorithm with a control mesh
and in blue the algorithm without control mesh

5.2.5 Reverse deformation
The last experiment consists of taking the mesh obtained at the end of the twist deformation and reverse it
to its initial cuboid shape, performing the inverse deformation to the twist experiment. We observed that
the object returns to its initial shape but does not recover its initial topology. This can be explained by the
difference between the average mesh energy in the cuboid mesh and the remeshing threshold. Since the
first is lower than the threshold, there is no incentive for the remeshing to try to retrieve this state and will
in place aim for a mesh energy situated right below the remeshing threshold.

6
Conclusion

In this work we presented an implementation of a local remeshing algorithm for injective deformations of
both two- and three-dimensional meshes. Injectivity is ensured thanks to the representation of the 3D object
in two different spaces, material and world spaces. The first one is responsible for validating remeshing
operations applied to the second. The algorithm is a hill-climbing method in which bad elements of the
mesh go through four successive passes, each one responsible for tackling a different approach to improve
the mesh. The implementation was evaluated by subjecting the mesh to multiple deformations. Their goal
was to identify optimal parameter values as well as evaluate the quality and performance of the remeshing.

6.1 Weaknesses and future work
Through our experiments, we observed situations in which the algorithm’s implementation was not optimal,
mainly two points: Performance and local optima. We saw that great deformations could not be recovered
from, even with small timesteps, and that the algorithm was sensible to its configuration. Reducing the
timestep size would not always yield results with improved quality. In some cases, finer deformation steps
could actually perform worse than larger ones.

Performance is linked to the concept of hill climbing. Only taking steps in the summit direction means
that any other step evaluated was run for nothing. If a hundred possible steps are available but only the
last one leads us in the right direction, the 99 others were computed for nothing. And this right step at
the time might not even be the best choice if we take into account the step after. In our implementation,
a remeshing step a timestep t is not aware of the upcoming deformation step. This means that the next
step might result in a worse mesh after remeshing than had we done nothing. This problem links both
weaknesses of the project: by going in the wrong direction of local optima, we then have to perform more
remeshing steps to recover thus, impacting performances.

A way of fixing this would be to have some kind of temporal knowledge. With it, we would be able
to take into account preceding timesteps and approximate the next deformation step to better evaluate
our remeshing choices. However, this does not improve the handling of big deformations. Improving
performance would be beneficial for solving both the issue of treating big deformations as well as making
wrong remeshing choices. By performing more remeshing passes we would be able to extend the treated
area around the bad element and thus regularize it to avoid surprises at the next remeshing step. To take

38

CHAPTER 6. CONCLUSION 39

again the hiker image, if more hikers are searching for the top of the hill, the chances of finding the summit
increase.

6.2 Use of AI tools
Please note that the LLM ChatGPT was punctually used in the redaction of this report to improve the
quality and readability of the text.

Bibliography

[1] Reviving the Search for Optimal Tetrahedralizations. Zenodo, February 2020.

[2] Calin Arens. The bowyer-watson algorithm; an efficient implementation in a database environment.
2002.

[3] Adam W. Bargteil, Chris Wojtan, Jessica K. Hodgins, and Greg Turk. A finite element method for
animating large viscoplastic flow. In ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07, page 16–es,
New York, NY, USA, 2007. Association for Computing Machinery.

[4] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[5] Lori Freitag, Mark Jones, and Paul Plassmann. A parallel algorithm for mesh smoothing. SIAM
Journal on Scientific Computing, 20(6):2023–2040, 1999.

[6] Vladimir Garanzha, Igor Kaporin, Liudmila Kudryavtseva, François Protais, Nicolas Ray, and Dmitry
Sokolov. Foldover-free maps in 50 lines of code, 2021.

[7] Steffen Hinderink and Marcel Campen. Galaxy maps: Localized foliations for bijective volumetric
mapping. ACM Trans. Graph., 42(4), jul 2023.

[8] Bryan Matthew Klingner and Jonathan Richard Shewchuk. Aggressive tetrahedral mesh improvement.
In Michael L. Brewer and David Marcum, editors, Proceedings of the 16th International Meshing
Roundtable, pages 3–23, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[9] A. Rassineux. 3d mesh adaptation. optimization of tetrahedral meshes by advancing front technique.
Computer Methods in Applied Mechanics and Engineering, 141(3):335–354, 1997.

[10] Jonathan Shewchuk. Two discrete optimization algorithms for the topological improvement of
tetrahedral meshes. 01 2002.

[11] Justin Solomon, Leonidas Guibas, and Adrian Butscher. Dirichlet energy for analysis and synthesis
of soft maps. Computer Graphics Forum, 32(5):197–206, 2013.

[12] Martin Wicke, Daniel Ritchie, Bryan M. Klingner, Sebastian Burke, Jonathan R. Shewchuk, and
James F. O’Brien. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph., 29(4),
jul 2010.

[13] Chris Wojtan and Greg Turk. Fast viscoelastic behavior with thin features. ACM Trans. Graph.,
27(3):1–8, aug 2008.

40

	1 Introduction
	2 Related work
	2.1 World space and material space
	2.2 Types of Meshes
	2.3 Hill climbing algorithms

	3 Mesh deformations
	3.1 Mesh evaluation
	3.1.1 Triangular meshes
	3.1.2 Tetrahedral meshes
	3.1.2.1 Computing the Jacobian

	3.2 Bad elements

	4 Remeshing
	4.1 General remeshing algorithm
	4.2 Control mesh
	4.3 Triangular meshes
	4.3.1 Topological pass
	4.3.2 Insertion pass
	4.3.3 Smoothing pass

	4.4 Tetrahedral meshes
	4.4.1 Topological pass
	4.4.2 Insertion pass
	4.4.2.1 Chebyshev Center
	4.4.2.2 Insertion algorithm

	4.4.3 Smoothing pass

	4.5 Complete algorithm

	5 Results
	5.1 Triangular meshes
	5.1.1 Stretch
	5.1.2 Compress
	5.1.3 Finding the right threshold

	5.2 Tetrahedral meshes
	5.2.1 Performance of passes
	5.2.2 Twist
	5.2.2.1 Influence of the Energy Threshold
	5.2.2.2 Influence of the Timestep Size
	5.2.2.3 Handling greater deformations

	5.2.3 Stretch
	5.2.3.1 Influence of the Energy Threshold
	5.2.3.2 Influence of the Timestep Size
	5.2.3.3 Handling bigger deformations

	5.2.4 Impact of the control mesh
	5.2.5 Reverse deformation

	6 Conclusion
	6.1 Weaknesses and future work
	6.2 Use of AI tools

