
Fast Hexahedral Mesh Extraction from

Locally Injective Integer-Grid Maps

Bachelor thesis

in the

Computer Graphics Group

of the University of Bern

Author

Tobias Kohler

Supervisors

Prof. Dr. David Bommes

Martin Heistermann

Abstract

Integer-Grid Maps as boundary-aligned volume parametrizations of tetrahedral meshes

onto a voxel grid have proven to be a valuable approach in the field of hex-meshing as

they can induce highly structured hexahedral meshes. The decomposition of the map

into multiple cell charts due to the presence of singularities and non-identity transitions

between adjacent charts makes the process of extracting a hex-mesh from an IGM non-

trivial. Additionally, inverted and degenerate charts in the parametrization may cause

inconsistencies that need to be fixed in a postprocessing step. As most current methods

work without such defects in the IGM, we present a specialized hex-extraction algorithm

that expects all cell charts to have a strictly positive volume and aims to be as fast as

possible. To achieve this, we apply common rasterization techniques to efficiently extract

the hex-mesh’s geometry and use a specifically designed data structure called propeller

to extract its topology.

1

Contents

1 Introduction 3

2 Theoretical Foundation 4

2.1 Geometry . 4

2.2 Orientations . 4

2.3 Mesh . 6

2.3.1 Implementation . 7

2.4 Integer-Grid Map . 7

3 Robust HexEx and Fast HexEx 9

3.1 The Dart Data Structure . 10

3.2 The Propeller Data Structure . 11

3.3 Properties . 13

4 Vertex Extraction 15

4.1 Rasterization . 16

4.1.1 Line Segment . 17

4.1.2 Triangle . 18

4.1.3 Tetrahedron . 19

4.1.4 Quadrilateral . 20

4.2 Robustness . 21

5 Topology Extraction 23

5.1 Local Topology . 23

5.1.1 Enumerating Propellers . 23

5.1.2 Connecting Propeller Blades . 25

5.1.3 Enumerating Hex-Corners . 26

5.2 Connecting Opposite Propellers . 29

5.3 Extracting the Hex-Mesh . 31

5.4 Implementation . 32

6 Results 34

6.1 Timings . 34

6.2 Complexity Scaling . 36

6.3 Runtime Analysis . 37

7 Conclusion 39

7.1 Discussion . 39

2

1 Introduction

Parametrization based hex-meshing is a popular and actively researched topic. While

tetrahedral meshes are easier to generate, hexahedral meshes are often preferred due to

their structured nature and use in advanced numerical simulations (Reberol et al. 2023).

Therefore, it is natural to want to transform a tetrahedral mesh into a hexahedral mesh.

(Lyon et al. 2016) presented HexEx, a robust hex-extraction algorithm, with a tet-mesh

and a parametrization as input, which looks for and resolves defects in the input such

as degeneracies and foldovers. Due to this, optimizations that would be possible in the

defect-free case are not applied.

Our method builds on HexEx and expects the input to be defect-free, namely locally

injective. The preprocessing of HexEx which resolves floating-point inaccuracies is kept

as-is.

The actual extraction consists of two phases which we aim to optimize: 1) Finding inter-

sections of the parametrization with integer-grid points to extract hex-vertices (geometry

extraction) and 2) tracing from each hex-vertex through potentially multiple charts of

tet-cells in the parametrization along integer iso-lines to adjacent hex-vertices while also

considering intersections of iso-surfaces with the parametrization that induce the hex-

faces (topology extraction).

We reimplement these phases from scratch and optimize them in two main ways. First,

where the original algorithm extracts hex-vertices by testing each point in the bounding

box of an element, we use rasterization techniques. Second, we replace the costly dart

data structure, which brings with it a lot of redundancy, with the more efficient propeller

data structure.

Our version is implemented in C++ besides the original HexEx such that the user is

able to easily switch between versions, in case, the original algorithm is desired. To

use HexEx, there is both a command line application and an OpenFlipper (Möbius and

Kobbelt 2012) Plugin.

3

2 Theoretical Foundation

2.1 Geometry

A subset of an Euclidean space is convex if each line segment given by two endpoints in

the subset is in its entirety contained in the subset.

A point in a convex set is an extreme point if it does not lie on any open line segment

given by two endpoints in the set.

The convex hull conv() of a subset of Euclidean space is the smallest convex set that

contains the subset.

If not specified otherwise, we consider elements within the 3-dimensional Euclidean space

R3.

A finite set of points {x1, ..., xd} is affinely dependent if there exist real numbers λ1, ..., λd

which satisfy λ1 + ... + λd = 0 such that λ1x1 + ... + λdxd = 0. Otherwise it is called

affinely independent.

The (affine) dimensionality of a set X is d ∈ N0 if a maximal affinely independent subset

of X contains exactly d+ 1 points (Grünbaum and Shephard 1969).

A (geometric and convex) d-polytope is the convex hull of finitely many points where d

denotes its dimensionality (Grünbaum and Shephard 1969). Then, each 1−polytope has

exactly two extreme points and each d-polytope, for d > 1, has at least d + 1 extreme

points. 0−polytopes are simply points, 1−polytopes are line segments, 2−polytopes are

(convex) polygons and 3−polytopes are (convex) polyhedra.

Figure 1: From left to right: Polytopes with increasing dimensionality and extreme points:
Point, line segment, triangle, quadrilateral, tetrahedron, hexahedron

A d-manifold (with boundary) is a subset of the Euclidean space for which each internal

point is locally homeomorphic to an open d−ball and each boundary point is locally

homeomorphic to an open d−half-ball (Kremer et al. 2013).

2.2 Orientations

The signed area of a triangle given by three (ordered) points A, B, C ∈ R2 is

area(A, B, C) =
1

2
·

∣∣∣∣∣(Ax − Cx) (Ay − Cy)

(Bx − Cx) (By − Cy)

∣∣∣∣∣ ∈ R

4

(a) ORI2D(A, B, C) > 0 (b) ORI2D(A, B, C) < 0 (c) ORI2D(A, B, C) = 0

Figure 2: Orientations of three points in 2D

and their orientation

ORI2D(A, B, C) = sign(area(A, B, C)) ∈ {−1, 0, 1}

Geometrically, three points are oriented positively if they are ordered counterclockwise

or C lies to the left of A⃗B (Fig. 2a). They are oriented negatively if they are ordered

clockwise or equivalently C lies to the right of A⃗B (Fig. 2b). Their orientation is zero if

C lies on the line A⃗B or equivalently the vectors A⃗B and B⃗C are collinear (Fig. 2c).

Similarly, in 3D space, the signed volume of a tetrahedron given by

four (ordered) points A, B, C, D ∈ R3 is

volume(A, B, C, D) =
1

6
·

∣∣∣∣∣∣∣
(Ax −Dx) (Ay −Dy) (Az −Dz)

(Bx −Dx) (By −Dy) (Bz −Dz)

(Cx −Dx) (Cy −Dy) (Cz −Dz)

∣∣∣∣∣∣∣ ∈ R

and their orientation

ORI3D(A, B, C, D) = sign(volume(A, B, C, D)) ∈ {−1, 0, 1}

Geometrically, four points are oriented positively if the first three are ordered counter-

clockwise when looking from D (Fig. 3a). They are oriented negatively if the first three

are ordered clockwise when looking from D (Fig. 3b). Their orientation is zero if D lies

on the plane given by A, B, C (Fig. 3c).

To efficiently and reliably compute these orientations with floating-point numbers, HexEx

uses exact predicates provided by (Shewchuk 1996). From the orientation checks ORI2D

and ORI3D, further checks are derived by (Lyon et al. 2016) which include ONLINE-

SEGMENT, INTRIANGLE and INTETRAHEDRON.

5

(a) ORI3D(A, B, C, D) > 0
(b)
ORI3D(A, B, C, D) < 0 (c) ORI3D(A, B, C, D) = 0

Figure 3: Orientations of four points in 3D

2.3 Mesh

A volumetric mesh is a 3-dimensional CW complex M = (V, E, F, C), consisting of

vertices V (0−elements), edges E (1−elements), faces F (2−elements) and cells C

(3−elements) (Pietroni et al. 2022). These d−elements are a generalization of geometric

polytopes to topological entities.

An edge e ∈ E is identified by two vertices e = {v1, v2}. Analogously, a face f ∈ F

is identified by a sequence of vertices f = (v1, ..., vk) where f is bounded by edges

ei = (vi, vi+1) for 0 < i < k and ek = (vk, v1) (Lyon et al. 2016). Analogously, a cell

c ∈ C is identified by a sequence of vertices c = (v1, ..., vk)
1 and bounded by faces.

If a d−element is entirely part of the boundary of a d′−element, d ̸= d′, they are said to

be incident. Two distinct d−elements, 1 ≤ d ≤ 3 are adjacent if they share a common

(d−1)−element on their boundary. Two distinct vertices are adjacent if they are incident

to a common edge (Kremer et al. 2013; Lyon et al. 2016).

We denote incidency between two elements by “∼” and write x < y if the dimensionality

of x is smaller than the dimensionality of y.

A boundary face is a face that is incident to less than two cells and a boundary edge or

vertex is an edge or vertex which is incident to at least one boundary face.

The geometry of the mesh is given by a geometric embedding g : V → R3 which maps

each vertex to a position in Euclidean space (Lyon et al. 2016).

A tetrahedral mesh consists entirely of tetrahedral cells, referred to as tets, i.e. cells

bounded by four triangular faces. Conventionally, the four vertices of a tet are oriented

positively according to Section 2.2.

A hexahedral mesh consists entirely of hexahedral cells, referred to as hexes, i.e. cells

bounded by six quadrilateral faces.

A mesh is a manifold if the union of its elements is a manifold.

We consider tetrahedral manifold meshes for which a d−element corresponds to a geo-

metric convex d−polytope as defined in Section 2.1.

1The order of the vertices that define a cell are often not unique and depend on varying conventions.

6

2.3.1 Implementation

The data structure that is used to store our input mesh, which is a tetrahedral manifold

mesh, is OpenVolumeMesh (OVM) as provided by (Kremer et al. 2013). OVM extends

the concepts of OpenMesh (Botsch et al. 2002), like separating edges into two directed

half-edges (Campagna et al. 1998), to the third dimension. Each face is split into a pair

of half-faces with opposing orientations, each incident to up to one cell. If a half-face is

incident to a tet-cell, we assume its vertices to be oriented positively with respect to the

fourth vertex of the tet.

We denote the set of half-edges by E
1
2 = {(v, e) ∈ V ×E : v ∼ e} and the set of half-faces

by F
1
2 = {(f, c) ∈ F × C : f ∼ c}.

2.4 Integer-Grid Map

Figure 4: A tet-mesh is mapped onto a 3D integer grid which implies the structure of the
hex-mesh by the preimage of the map. To allow for a resulting singular hex-edge of valence 3 in
the center, the mesh is cut open around it.

Source: (Lyon et al. 2016)

A 3D integer-grid map (IGM) f is the union of per-cell linear maps f ci
: R3 → R3 which

map the vertex positions (pi, qi, ri, si) of each tet ci to parameters (ui, vi, wi, xi) in

the parametric domain. For shorter notation, we write

f c(v) for f c(g(v)) and f c(v1, ..., vk) for (f c(v1), ..., f c(vk)).

Given two adjacent tets ci and cj, the parameter function f might have different values

in both charts. They are related by the transition functions τ ij : R3 → R3 as illustrated

in Fig. 4 which are automorphisms that map the chart of a tet ci to the chart of the

adjacent tet cj, i.e. f cj
(v) = τ ij(f ci

(v)) for each of the three common vertices v. It

follows that τ ji = τ−1ij .

The sum of parametric dihedral face angles around an edge is always an integer multiple

of π
2
. If this angle is 2π around an inner edge or π around a boundary edge, the edge is

defined to be regular. Otherwise, the edge is called singular (Brückler et al. 2022).

A vertex is defined to be singular if it is incident to one, three or more singular edges

(Lyon et al. 2016).

7

As presented similarly, for example, in (Brückler et al. 2022; Liu et al. 2018; Lyon et al.

2016), the 3D integer-grid map must satisfy the following four constraints:

(IGM1) Conformity The transition functions τ ij are of the form

τ ij(u) = Rij(u) + tij

where Rij ∈ Oct is one of the 24 orientation-preserving

octahedral permutations (Solomon et al. 2017) and tij ∈ Z3 is an integer translation.

Note that Rji = R−1ij and tji = Rji(−tij).

(IGM2) Boundary alignment Boundary faces are mapped to regions on integer planes.

∀f ∈ ∂F : ∃z ∈ Z, a, b, c ∈ R2, R ∈ Oct : f(f) = (R

[
z

a

]
, R

[
z

b

]
, R

[
z

c

]
)

(IGM3) Singularities Singularities are mapped to the integer grid. In particular, singular

edges are mapped to segments on integer lines

∀e ∈ SE : ∃z ∈ Z2, a, b ∈ R, R ∈ Oct : f(e) = (R

[
z

a

]
, R

[
z

b

]
)

and singular vertices are mapped to integer points.

∀v ∈ SV : f(v) ∈ Z3

(IGM4) Local injectivity The image of each tet has a positive volume.

∀ci ∈ C : ori3D(ui, vi, wi, xi) = 1

.

A parametrization which satisfies (IGM1)-(IGM3) approximately, due to the limited pre-

cision of floating point arithmetic, and disregards (IGM4) entirely is called a relaxed

integer-grid map (Lyon et al. 2016). Similarly, we refer to a parametrization which satis-

fies (IGM1)-(IGM3) approximately, but ensures (IGM4) as a positively relaxed integer-grid

map.

Using OVM, transition functions are stored per half-face where τ (f, c) refers to the tran-

sition from the chart of c to the other cell incident to f . For boundary half-faces with no

incident cell, the transition function is set to the identity.

8

3 Robust HexEx and Fast HexEx

From now on, to differentiate between the original and the optimized HexEx, we refer

to the original algorithm, provided by (Lyon et al. 2016), as Robust HexEx and to the

new algorithm, provided with this work, as Fast HexEx. If, in the context, there is no

noteworthy distinction between the two, we refer to the algorithm simply as HexEx.

On a fundamental level, Robust HexEx and Fast HexEx differ in two ways. Firstly,

Robust HexEx expects the IGM to be only relaxed, i.e. allows for flipped (negative

volume) or degenerate (zero volume) tets in the parametrization. Fast HexEx is more

strict and expects the IGM to be positively relaxed, meaning all parametrized tet-cells

must have a positive volume (IGM4). Secondly, the two versions differ in their primary

data structure. Whereas Robust HexEx uses darts (Kraemer et al. 2014), Fast HexEx

makes use of a new data structure called propeller which we designed specifically for

its use in the topology extraction phase of the algorithm. The two data structures are

presented in Section 3.1 and Section 3.2.

Given a tuple (Mtet, f), consisting of a manifold tetrahedral meshMtet and a (positively)

relaxed integer-grid map f , HexEx extracts a boundary aligned hexahedral mesh Mhex.

The hexahedral mesh extraction consists of four stages:

1. Preprocessing The transition functions τ ij are extracted from the IGM and the

parametrization is sanitized, meaning the exact fulfillment of constraints (IGM1)-

(IGM3) is ensured.

2. Geometry Extraction For each integer-grid point intersecting with a parametrization

of a tet-mesh-element, a hex-vertex is extracted.

3. Topology Extraction For each extracted hex-vertex, a list of darts/propellers, based

on intersections of the integer grid with an infinitesimal neighborhood of the

parametrization around the vertex, is extracted. Then, they are interconnected by

navigating through the parametrized input mesh.

4. Postprocessing Inconsistencies due to flipped or degenerate tets are resolved.

In Fast HexEx, the preprocessing step remains untouched and is therefore not further

discussed here2. What is important to note here is, that after the preprocessing phase,

constraints (IGM1)-(IGM4) are all satisfied exactly and for any further geometric calcu-

lations, we use exact predicates.

Thanks to the constraint (IGM4) being satisfied, the postprocessing step can be com-

pletely omitted.

In Section 4 and Section 5 we will discuss the vertex- and topology extraction, which are

the two stages we aim to optimize, in more detail.

2The ideas can be found in (Lyon et al. 2016) or in (Ebke et al. 2013) for the 2D equivalent.

9

3.1 The Dart Data Structure

Robust HexEx uses the dart data structure, based on (Kraemer et al. 2014), to define

the topology of the resulting hex-mesh. A dart is a tuple of a vertex, an edge, a face and

a cell which are all incident to one another. The unique set of all darts is denoted by

D = {(v, e, f, c) : v ∼ e, e ∼ f, f ∼ c} ⊂ V × E × F × C. The definition of darts is

entirely combinatorial and does not depend on the geometry of the mesh.

Furthermore, for each dart, four connections α0, ..., α3 to other darts are stored where

αi(d) is the unique dart in D which shares all elements with d except the i−element, as

seen in Fig. 5. For boundary faces, the α3 connection is omitted.

α0(v, e, f, c) = (v′, e, f, c) ∈ D, v ̸= v′

α1(v, e, f, c) = (v, e′, f, c) ∈ D, e ̸= e′

α2(v, e, f, c) = (v, e, f ′, c) ∈ D, f ̸= f ′

α3(v, e, f, c) = (v, e, f, c′) ∈ D, c ̸= c′

Figure 5: Illustration of the four dart connections. The elements of the darts are highlighted.

Source: (Lyon et al. 2016)

10

3.2 The Propeller Data Structure

Figure 6: A propeller pv, e = (v, e, f0
v, e, f

1
v, e, f

2
v, e, f

3
v, e) on a valence four edge e is connected

to the opposing propeller on the same edge. Its blades are ordered counter-clockwise around
itself. The i−th blade and the corresponding opposite blade are incident to a common face f i

v, e

and f i−1
v, e and f i

v, e are incident to a common cell.

For a hexahedral manifold mesh H = (V, E, F, C) we define a set of 2|E| propellers as:

P = {(v, e, f 0
v, e, ..., f

me−1
v, e) : v ∼ e, ∀i : e ∼ f i

v, e, ∀j ̸= i : f i
v, e ̸= f j

v, e} ⊂ V ×E×F ∗ (1)

where me = valence(e) is the number of faces in F which are incident to e ∈ E.

Each propeller pv, e = (v, e, f 0
v, e, ..., f

me−1
v, e) ∈ P then is a tuple corresponding to one

unique half-edge (v, e) ∈ E
1
2 with all its incident faces f i

v, e around the edge3.

The ordering of the faces is restricted by the following constraints:

(P1) Two consecutive faces are incident to a (unique) common cell.

∀i ∈ {0, ..., me − 2} : ∃c ∈ C : f i
v, e ∼ c, f i+1

v, e ∼ c

(P2) The faces of two opposing propellers on the same edge are ordered conformingly

which shall mean there exists a (unique) connection offset le ∈ {0, ..., me − 1} per

edge such that

∀i ∈ {0, ..., me − 1} : f i
v, e = f

(le−i) mod me

v′, e

where v′ ̸= v are adjacent vertices incident to the common edge e.

3Comparing it with OVM, a propeller is essentially a half-edge with an implicit half-edge-half-face-
iterator.

11

For each propeller pv, e ∈ P we store me + 1 connections to other propellers:

opposite(pv, e) = pv′, e ∈ P , v ̸= v′

bladei(pv, e) = pv, e′ ∈ P , e ̸= e′, e′ ∼ f i mod me
v, e

The opposite propeller opposite(pv, e) is the unique propeller in P which lies on the

opposing half-edge i.e. on the same edge but different vertex. The i−th blade bladei(pv, e)

is the unique propeller on the same vertex but different edge such that both edges are

incident to the same face f i
v, e. An illustration is given in Fig. 6.

Additionally, for each edge connection between two opposing propellers pv, e and pv′, e, the

connection offset le, as defined in (P2), is stored, as well as, whether or not the edge is

part of the mesh’s boundary.

If the edge is indeed a boundary edge then the last and first face, fme−1
v, e and f 0

v, e, are

only incident to a common cell if me = 2. Otherwise, if the edge is not a boundary edge,

(P1) implies that the last and first face are always incident to a common cell.

The propeller on the opposing vertex and different edge such that both edges are incident

to the same face f i
v, e is implicitly given by:

oppositebladei(pv, e) = blade(le−i)(opposite(pv, e))

Note that, if oppositebladei(pv, e) = bladej(opposite(pv, e)), then the connection offset is

le = i+ j. Furthermore oppositebladei+k(pv, e) = bladej−k(opposite(pv, e)) for every k.

For convenience, we define the next and previous blade of a propeller blade as

nextbladei(pv, e) =

undefined, if e is boundary and i = me − 1

blade(i+1)(pv, e), else
(2)

prevbladei(pv, e) =

undefined, if e is boundary and i = 0

blade(i−1)(pv, e), else
(3)

where they are undefined if the two consecutive blade faces are boundary faces of a

different cell.

Whereas the set of darts is always unique for a given hex-mesh, this is not directly the

case for the set of propellers based on the aforementioned definition as it allows blades

to be ordered either clockwise or counterclockwise around the half-edge and the initial

face for inner propellers is not well-defined. A canonical definition can be achieved by

requiring blades to always be ordered in a counterclockwise manner around the half-edge,

which directly ensures (P2), and the initial blade for inner propellers to be the one with

the smallest index, assuming an index based structure.

12

3.3 Properties

Figure 7: Three ordered propellers (red, green,
blue), which are blades among themselves, cor-
respond to a dart. The αi connections of the
dart can then given by reordering (α1, α2) or by
the propeller connections (α0, α3).

Even though both constraints do not men-

tion the geometry of the mesh, the pro-

pellers are only defined for manifold com-

plexes. Only then is (P1) always feasi-

ble. However, we could easily store a

boolean value per blade that determines

if the blade and the next blade are inci-

dent to a common cell and adjust (P1) ac-

cordingly. This would allow the propellers

to be used for non-manifolds. Moreover,

nothing restricts propellers to only hexa-

hedral meshes, any polyhedral mesh could

be defined using this data structure.

We now compare the two data structures,

darts and propellers, only considering hex-

meshes.

In both, only vertices are stored explicitly

while edges, faces and cells are stored implicitly by the interconnections.

If we define the set of all propeller triples that are incident to a common hex-cell and

hex-vertex as

P3 = {(pv, e, pv, e′ , pv, e′′) : e ̸= e′, e ̸= e′′, e′ ̸= e′′ and ∃c ∈ C : e, e′, e′′ ∼ c)} ⊂ P×P×P

then it follows that any two of the propellers are consecutive blades of the third propeller

in the triple. A bijection between P3 and the set of darts D can then be defined as:

dartify : P3 → D, (pv, e, pv, e′ , pv, e′′) 7→ (v, e, f, c) s.t. e, e′ ∼ f and e, e′, e′′ ∼ c

If dartify−1(v, e, f, c) = (pv, e, pv, e′ , pv, e′′) = (pv, e, bladei(pv, e), nextbladei(pv, e)), the αi

pointers of the dart would then be given by

α0(pv, e, pv, e′ , pv, e′′) = (opposite(pv, e), oppositebladei(pv, e), oppositebladei+1(pv, e))

α1(pv, e, pv, e′ , pv, e′′) = (pv, e′ , pv, e, pv, e′′)

α2(pv, e, pv, e′ , pv, e′′) = (pv, e, pv, e′′ , pv, e′)

α3(pv, e, pv, e′ , pv, e′′) = (pv, e, pv, e′ , prevbladei(pv, e))

as visualized in Fig. 7.

13

There are obviously 2|E| propellers in P as there is a one-to-one correspondence between

the propellers and the half-edges.

This will always be significantly less than the number of darts in D. Each hexahedral

cell consists of six faces, each face consists of four edges and each edge consists of two

vertices. This means, there are 48 darts per cell and 48|C| darts in total.

In the extreme and practically irrelevant case in which all cells of the mesh are isolated

there are still twice as many darts as there are propellers. In practicality this number is

higher (mostly around six or seven in our observations) which highlights an advantage of

the propellers in our application compared to the darts.

Lastly, we consider the number of connections that need to be stored. Each dart will

always store four connections, though one of them (α3) might not be defined. This brings

the total number of stored connections to 4|D| = 192|C|.
The number of connections for each propeller is me + 1, depending on the edge valence.

In total, there are therefore 2
∑
e∈E

(me + 1) = 2
∑
e∈E

me + 2|E| = 8|F | + 2|E| propeller

connections. The last equation follows from the fact that each face consists of four edges.

These observations are summarized in Table 1.

Property Darts D Propellers P
Defined for non-manifolds Yes Yes
Defined for general polyhedral meshes Yes Yes
Well defined Yes Yes
Number of elements 48|C| 2|E|
Number of connections 192|C| 8|F |+ 2|E|

Table 1: Comparison of the set of darts with the set of propellers in terms of some basic
properties when used to define a hexahedral mesh.

14

4 Vertex Extraction

Each integer-grid point z ∈ Z3 intersecting a parametrized tet-element implies a vertex

of the final hex-mesh or hex-vertex for short. The tet-element on which the hex-vertex is

extracted is called the generator of the hex-vertex with the set of all hex-vertex-generators

being denoted by G ⊂ V ∪ E ∪ F ∪ C.

To avoid duplicate hex-vertices on shared boundary elements, the boundary is excluded.

More formally, we define the parametric volume F c of an element as its parametric image

in the chart of a certain cell. The parametric volume of a d−element is then a d−polytope

corresponding to the convex hull of its vertex parameters.

F c : V ∪ E ∪ F ∪ C → P(R3), x 7→ conv(f c(x))

Furthermore, we define the parametric interior F̊ c of an element as its parametric volume

minus the parametric volume of its boundary.

F̊ c(v) = F c(v) (4)

F̊ c(e) = F c(e) \
⋃
v∼e

F c(v) (5)

F̊ c(f) = F c(f) \
⋃
e∼f

F c(e) (6)

F̊ c(c) = F c(c) \
⋃
f∼c

F c(f) (7)

A high-level algorithm for the whole extraction algorithm of hex-vertices from edges is

given in Algorithm 1 with the concept for vertices, faces and cells being exactly the same.

The position of an extracted hex-vertex is given by mapping the integer-grid parameter

inside the parametric interior back to the input mesh domain. f c
−1 exists because f c is

injective (IGM4).

The problem boils down to finding F̊ c ∩ Z3 in an efficient manner.

In Section 2.2 it was stated that exact predicates ONLINESEGMENT, INTRIANGLE

and INTETRAHEDRON are given to reliably perform the necessary checks. The check

needed for vertices is trivial, one simply examines if its parameter is integer.

A naive approach and the one used by Robust HexEx for faces and cells, is to check

all points inside the axis aligned bounding box of the parametric image. In general,

multiple integer-grid points in the bounding box are not inside the polytope. Hence, a

more efficient approach that aims to minimize the number of exact predicate calls is to

apply common rasterization steps. The routines to extract integer-grid points from edges

(line segments), faces (triangles) and cells (tetrahedra) are presented in the following.

15

Algorithm 1 Vertex Extraction on Edges (High-Level)
1: for e ∈ E do
2: pick any cell c ∈ C s.t. e ∼ c
3: Z ← F̊ c(e) ∩ Z3

4: if Z ̸= ∅ then
5: G← G ∪ {e}
6: for z ∈ Z do
7: generate hex-vertex with generator e, geometric embedding fc

−1(z)
8: and parameter z in the chart of c

Figure 8: Illustration of the tet rasterization hierarchy. From left to right: Rasterizing a tetra-
hedron means rasterizing multiple triangles and quadrilaterals which mean rasterizing multiple
line segments.

4.1 Rasterization

Commonly, rasterization refers to the process of converting a given shape into a series of

pixels (2D) or voxels (3D). Here, we use the term to describe the process of enumerating

all integer-grid points that are inside the parametric interior of a given polytope of a

tet-mesh.

Our algorithms for rasterizing triangles, quadrilaterals and tetrahedra are derived from

(Ruiz et al. 2004) and explained further in the following.

To simplify matters, we assume the coordinates of the points describing the rasterized

polytope to be permuted such that the extents of the axis aligned bounding box of the

polytope are sorted in descending order, i.e. if S(A1, ..., Ad) = maxi, j(|Ai−Aj|) contains
the three lengths of the bounding box, then

Sx ≥ Sy ≥ Sz (8)

As we exclude the boundaries of our polytopes, it helps to define ⌈x⌉∗ = ⌊x⌋ + 1 and

⌊x⌋∗ = ⌈x⌉ − 1 as the smallest integer which is strictly larger than x and the largest

integer which is strictly smaller than x respectively.

Figure 8 illustrates the rasterizations we are going to discuss. Each rasterization builds

on the rasterizations of previous dimensions.

16

4.1.1 Line Segment

Let a line segment be given by its distinct endpoints A and B ∈ R3 satisfying Eq. (8).

We differentiate between the case in which the line segment lies parallel to or on an

integer line, meaning Ay = By and Az = Bz, and the general 3D case. The former case is

straightforward and does only require exact predicates when the line segment corresponds

to a scanline of an enlarged triangle or tetrahedron as explained below. For the latter we

sweep along one axis and test all nearest integer-grid points to the line segment, computed

using linear interpolation and rounding, by evaluating the appropriate exact predicate.

The axis of sweeping is chosen as argmini(|Ai−Bi| > 0) (y or z) to minimize the number

of points to check as illustrated in Fig. 9. The process is shown in Algorithm 2 where the

sweeping axis is assumed to be the y−axis.

Figure 9: Line Rasterization illustrated in 2D: Sweeping along the x−axis leads to 6 candidates
(left) while sweeping along the y-axis leads to 3. The axis of sweeping is therefoe chosen as the
y−axis. Marked red is the only integer-grid point on the line segment, the other candidates are
gray.

Algorithm 2 Rasterization of a Line Segment
Input

P ∈ {ONLINESEGMENTL, INTRIANGLET , INTETRAHEDRONT } Exact predicate
A, B ∈ R3 Line segment s.t. (8)

Output
L ∩ Z3 Integer-grid points on the segment s.t. P is satisfied

1: Z ← ∅
2: if Ay = By and Az = Bz then //1d case
3: if (Ay , Az) ∈ Z2 then //on integer-grid line?
4: x1, x2← ⌈min(Ax, Bx)⌉∗, ⌊max(Ax, Bx)⌋∗ //1d interval integer endpoints
5: if P ̸= ONLINESEGMENT then //subroutine of triangle or quad/tet?
6: x1← argminx1≤x≤x2(P (x, Ay , Az)) //account for enlarged element
7: x2← argmaxx1≤x≤x2(P (x, Ay , Az))

8: for x = x1 upto x2 do //make use of convexity
9: Z ← Z ∪ {(x, Ay , Az)}

10: else //3d case - rasterize along y-axis
11: y1, y2← min(Ay , By), max(Ay , By) //bottom and top
12: for y = ⌈y1⌉∗ upto ⌊y2⌋∗ do

13: t← y−y1
y2−y1

∈ (0, 1) //linear interpolation

14: z ← round((1− t) ·A+ t ·B) ∈ Z3 //nearest integer-grid point
15: if P (z) then //on line/in triangle/in tet?
16: Z ← Z ∪ {z}
17: return Z

17

4.1.2 Triangle

Figure 10: Triangle Ras-
terization in 2D: With each
iteration the scanline end-
points (xB, y) and (xA, y)
are updated and the line seg-
ment is rasterized. Our ras-
terization in 3D works anal-
ogously.

For a triangle, we use a common scanline approach like pre-

sented in (Ruiz et al. 2004) to enumerate all its integer-grid

points.

With Eq. (8) being satisfied, the points (A, B, C) of the tri-

angle are sorted in descending order with respect to the axis

of sweeping which is chosen as one minimizing the number of

scanlines. This is going to be the y−axis for integer-aligned

triangles (where Sz = 0) and the z−axis otherwise. In the

following, we assume it to be the y−axis.

Ay ≥ By ≥ Cy (9)

The level of the scanline is first initialized to y = ⌈Cy⌉∗ and
the scanline endpoints PA and PB are computed according

to the slopes mCA and mCB and, with each iteration, they

are updated by the slope of the edge they lie on. PB starts on the edge CB and is

incremented by the slope mCB = (Bx−Cx, Bz−Cz)
By−Cy

. Once it reaches the middle point B, it

is adjusted to the edge BA and from now on updated by mBA. PA is always incremented

by mCA.

The core concept is illustrated in Fig. 10 and the implementation is given in Algorithm 3.

Algorithm 3 Rasterization of a Triangle
Input

P ∈ {INTRIANGLET , INTETRAHEDRONT } Exact predicate
A, B, C ⊂ R3 Triangle s.t. (8)

Output
T ∩ Z3 Integer-grid points in the triangle s.t. P is satisfied

1: Z ← ∅
2: Sort A, B, C s.t. Ay ≥ By ≥ Cy

3: mCA ← (Ax−Cx, Az−Cz)
Ay−Cy

//slope of edge CA

4: mCB ← (Bx−Cx, Bz−Cz)
By−Cy

//slope of edge CB

5: mBA ← (Ax−Bx, Az−Bz)
Ay−By

//slope of edge BA

6: y ← ⌈Cy⌉∗
7: (xA, zA)← (Cx, Cz) + (y − Cy) ·mCA; iA ← mCA //interval endpoint wandering from C to A and increment
8: (xB , zB)← (Cx, Cz)+ (y−Cy) ·mCB ; iB ← mCB//interval endpoint wandering from C over B to A and increment
9: while y ≤ ⌊Ay⌋∗ do

10: if y = ⌈By⌉∗ then //reached middle vertex B?
11: (xB , zB)← (Bx, Bz) + (y − Cy) ·mBA; iB ← mBA //update appropriate point and increment

12: Z ← Z ∪ rasterizeLineSegment(P, (xA, y, zA), (xB , y, zB)) //Algorithm 2
13: y ← y + 1
14: (xA,B , zA,B)← (xA,B , zA,B) + iA,B

15: return Z

18

4.1.3 Tetrahedron

Figure 11: Illustration of the raster-
ization of a tetrahedron. When inter-
secting the tet between C and B, the
intersection is a quadrilateral instead
of a triangle.

Conceptually, rasterizing a tetrahedron functions

like rasterizing a triangle (Fig. 11). Instead of

scanlines, there are two-dimensional scanplanes cor-

responding to the intersection of an axis aligned

plane with the tetrahedron. The axis of sweeping

minimizing the number of scanplanes is always the

z−axis because of Eq. (8). A scanplane here is ei-

ther a triangle or a (convex) quadrilateral with the

latter being the case if it lies between the two mid-

dle points of the tetrahedron.

It is common practice to rasterize a general polygon

by separating it into individual triangles. However,

as we consider only convex, two-dimensional4 quads

and our goal is to minimize the use of exact predi-

cates, we present below a method to rasterize them

directly. Algorithm 4 shows the tet-rasterization.

Algorithm 4 Rasterization of a Tetrahedron
Input

P = INTETRAHEDRONT Exact predicate

A, B, C, D ⊂ R3 Tetrahedron s.t. (8)

Output

T ∩ Z3 Integer-grid-points in the tet s.t. P is satisfied

1: Z ← ∅
2: Sort A, B, C, D s.t. Az ≥ Bz ≥ Cz ≥ Dz

3: mDA, mDB , mDC ←
(Ax−Dx, Ay−Dy)

Az−Dz
,

(Bx−Dx, By−Dy)

Bz−Dz
,

(Cx−Dx, Cy−Dy)

Cz−Dz
//slopes

4: mCA, mCB , mBA ←
(Ax−Cx, Ay−Cy)

Az−Cz
,

(Bx−Cx, By−Cy)

Bz−Cz
,

(Ax−Bx, Ay−By)

Az−Bz

5: z ← ⌈Dz⌉∗

6: (xA, yA)← (Dx, Dy) + (z −Dz) ·mDA; iA ← mDA //scanplane points and increments

7: (xB , yB)← (Dx, Dy) + (z −Dz) ·mDB ; iB ← mDB

8: (xC , yC)← (Dx, Dy) + (z −Dz) ·mDC ; iC ← mDC

9: (xC′ , yC′)← (0, 0); iC′ ← (0, 0)

10: while z ≤ ⌊Az⌋∗ do

11: if z = ⌈Cz⌉∗ then //reached second lowest vertex C?

12: (xC , yC)← (Cx, Cy) + (z − Cz) ·mCA; iC ← mCA

13: (xC′ , yC′)← (Cx, Cy) + (z − Cz) ·mCB ; iC′ ← mCB

14: if z = ⌈Bz⌉∗ then //reached third lowest vertex B?

15: (xB , yB)← (Bx, By) + (z −Bz) ·mBA; iB ← mBA

16: if Cz < z < Bz then //Note that the ordering A, B, C′, C always implies a convex, non-self-intersecting quad

17: Z ← Z ∪ rasterizeQuadrilateral(P, (xA, yA, z), (xB , yB , z), (xC′ , yC′ , z), (xC , yC , z)) //Algorithm 5

18: else

19: Z ← Z ∪ rasterizeTriangle(P, (xA, yA, z), (xB , yB , z), (xC , yC , z)) //Algorithm 3

20: z ← z + 1

21: (xA,B,C,C′ , yA,B,C,C′)← (xA,B,C,C′ , yA,B,C,C′) + iA,B,C,C′ //increment

22: return Z

4A generalization to three dimensions is straightforward.

19

4.1.4 Quadrilateral

The idea for the rasterization of a quadrilateral given by A, B, C, D ∈ R2 remains the

same. We assume the axis of sweeping to be the y−axis and

Ay, By, Cy ≥ Dy (10)

In analogy to a triangle, we start at the bottom point Dy and update our scanline

endpoints until the top point is reached. Unlike edges, triangles or tetrahedra, which

are simplexes with each pair of vertices forming an edge, a quadrilateral is a 2−polytope

with 4 vertices and 4 edges. This means, A can’t be constrained to be the top point

if D is constrained to be the bottom one as that could imply a self-intersecting quad.

With either A, B or C at the top, there are now three different configurations, each with

its distinct way of updating the scanline endpoints as illustrated in Fig. 12. A detailed

implementation is given in Algorithm 5.

(a) A is on top: xC
moves through C and B

(b) B is on top: xC moves
through C, xA through A

(c) C is on top: xA
moves through A and B

Figure 12: With D as the bottom point, depending on which point is on top, the scanline for
a quadrilateral needs to be updated differently.

20

Algorithm 5 Rasterization of a Quadrilateral
Input

P = INTETRAHEDRONT Exact predicate
A, B, C, D ⊂ R3 Convex Quad s.t. (8) and Az = Bz = Cz = Dz ∈ Z

Output
Q ∩ Z3 Integer-grid points in the quad s.t. P is satisfied

1: Z ← ∅
2: Shift A, B, C, D s.t. Ay , By , Cy ≥ Dy

3: E ← argmaxP∈{A,B,C}(Py) //get top point

4: y ← ⌈Dy⌉∗
5: mDA, mDC , mCB , mAB ← Ax−Dx

Ay−Dy
, Cx−Dx

Cy−Dy
, Cx−Cx

By−Cy
, Bx−Ax

By−Ay
//slopes

6: xA ← Dx + (y −Dy) ·mDA; iA ← mDA

7: xC ← Dx + (y −Dy) ·mDC ; iC ← mDC //scanline endpoints and increments
8: while y ≤ ⌊Ey⌋∗ do
9: if E = A then //A is top?

10: if y = ⌈By⌉∗ then //reached B, second highest?
11: xC ← Bx + (y −By) ·mAB ; iC ← mAB

12: else if y = ⌈Cy⌉∗ then //reached C, second lowest?
13: xC ← Cx + (y − Cy) ·mCB ; iC ← mCB

14: else if E = B then //B is top?
15: if y = ⌈By⌉∗ then //reached A?
16: xA ← Ax + (y −Ay) ·mAB ; iA ← mAB

17: if y = ⌈Ay⌉∗ then //reached C?
18: xC ← Cx + (y − Cy) ·mCB ; iC ← mCB

19: else //C is top?
20: if y = ⌈By⌉∗ then //reached B, second highest?
21: xA ← Bx + (y −By) ·mCB ; iA ← mCB

22: else if y = ⌈Ay⌉∗ then //reached A, second lowest?
23: xA ← Ax + (y −Ay) ·mAB ; iA ← mAB

24: Z ← Z ∪ rasterizeLineSegment(P, (xA, y, Az), (xC , y, Az)) //Algorithm 2
25: y ← y + 1
26: xA,C ← xA,C + iA,C

27: return Z

4.2 Robustness

Figure 13: The lim-
ited precision of floating
point arithmetic leads to a
point being considered out-
side the triangle, missing a
hex-vertex.

While mathematically correct, these rasterization algorithms

still need to consider floating-point errors which potentially

cause inaccuracies like the one illustrated in Fig. 13 where

the line segment in the triangle becomes too short, missing

an integer point. To remedy this, before rasterizing, triangles

and tetrahedra are enlarged by some small constant ϵ > 0.

For line segments, this is unnecessary since its endpoints

are always given exactly. The rasterization steps are then

performed with respect to the upscaled element whereas the

exact predicates are evaluated with respect to the original

element.

To achieve a constant distance between boundaries, given by

ϵ > 0, the points are scaled around the incenter I by a factor
r+ϵ
r

> 1 where r > 0 is the inradius (Fig. 14a).

For a tetrahedron given by points A, B, C, D ∈ R3, the

incenter I ∈ R3 is given by I = a·A+b·B+c·C+d·D
a+b+c+d

where a, b, c, d are the areas of the

triangular faces and the inradius r ∈ R>0 is given by r = 3·|volume(A,B,C,D)|
a+b+c+d

. The incenter

21

and inradius of a triangle are given analogously. Each point P defining the tet or triangle

is then mapped to P ′ = I + r+ϵ
r

· (P − I).

As different small values for ϵ did not have a noticeable effect on performance (Fig. 14b),

it has been implemented as ϵ = 10−6 which is sufficiently larger than floating point

inaccuracies5.

The enlargement is accounted for as shown in Algorithm 2. When rasterizing an axis

aligned integer line as a subroutine of rasterizing a triangular face or tetrahedral cell,

one tests from both sides until the two endpoints inside the element are found. Then,

due to convexity, all points in between do not require any exact predicates. All of the

aforementioned calculations can be skipped if the bounding box of the element does not

contain any integer-grid points, which is trivial to check.

The vertex-extraction using the example of faces is shown in Algorithm 6.

Algorithm 6 Vertex Extraction on Faces
1: for f ∈ F do
2: pick any cell c ∈ C s.t. f ∼ c
3: T ← (u, v, w) = fc(f)
4: if BOUNDINGBOX(T) ∩ Z3 = ∅ then
5: continue
6: T ′ ← enlargeTriangle(T, ϵ)
7: Permute the x, y, z coordinates of T and T ′ according to π ∈ S3 s.t. Eq. (8)
8: P ← INTRIANGLET

9: Z ← rasterizeTriangle(P, T ′) //Algorithm 3
10: if Z ̸= ∅ then
11: G← G ∪ {f} //add face f to list of hex-vertex generators
12: for z ∈ Z do
13: generate hex-vertex with generator f , geometric embedding fc

−1(π−1(z))
14: and parameter π−1(z) in the chart of c

(a) Illustration of a triangle upscaling
around its incenter by some amount ϵ.

(b) Timings of the hex-vertex extraction
from faces and cells using different rasteri-
zation ϵ (model: n03u skijump).

5In C++, DBL EPSILON, which defines the difference between 1.0 and the next value representable
by a double precision floating point, has the order of magnitude −16 (base 10).

22

5 Topology Extraction

The extracted hex-vertices define the geometry of the mesh, but topology information,

i.e. hex-edges, -faces and -cells, is still missing.

For parametrizations which are globally injective and only contain identity transitions,

this problem would be trivial. However, while in practical examples, most transitions

are indeed trivial, non-identity transitions between the charts of adjacent cells, especially

around singularities, need to be considered.

The topology extraction is separated into two parts. First, the local topology per hex-

vertex generator is extracted, resulting in a list of propellers with blade connections

but not yet any opposite connections. In the second part, the propellers per hex-vertex

are traced through the parametrized mesh, in accordance with the transitions, until the

opposing vertex and propeller is reached. The topology of the hex-mesh is then given as

stated in Section 3.2. It is our goal to avoid extracting any redundant information that

is already explicitly or implicitly provided.

5.1 Local Topology

During the vertex extraction a list of hex-vertex generators is created, consisting of all

tet-elements which contain at least one integer-grid point in their parametric interior.

Let us now discuss how we extract the local topology per generator and consequently per

hex-vertex while thinking about possible local configurations depending on the type of

generator.

5.1.1 Enumerating Propellers

First, we formalize the problem and define an integer-grid edge as an integer line segment

starting at z going into direction d⃗

E(z, d⃗) = {z + td⃗ : 0 < t < 1} (11)

and an integer-grid face as an integer plane segment starting at z extending into or-

thonormal directions d⃗1 and d⃗2

F(z, d⃗1, d⃗2) = {z + t1d⃗1 + t2d⃗2 : 0 < t1, t2 < 1} (12)

where z ∈ Z3 is an integer parameter and d⃗, d⃗1, d⃗2 ∈ {e⃗1, e⃗2, e⃗3, −e⃗1, −e⃗2, −e⃗3} are

axis aligned and unit length directions. Strict inequalities are used to exclude z from the

integer-grid edge and integer-grid face.

Let z ∈ F̊ c(x)∩Z3 be a point in the parametric interior of an element x ∈ V ∪E ∪F ∪C

and d⃗ as above. Then we generate a propeller p, i.e. a halfedge of the hex-mesh, if

23

the corresponding integer-grid line intersects the parametric interior of an element in the

local neighborhood.

POINTSINTOc(x, y, d⃗) ⇐⇒ E(z, d⃗) ∩ F̊ c(y) ̸= ∅ (13)

Figure 15: Illustration of different pro-
peller (and vertex) types. The type of a pro-
peller is given by its holder and the type of
a hex-vertex is given by its generator.

where y ∈ E ∪ F ∪ C is either an incident el-

ement of x of higher dimensionality or x itself.

POINTSINTO is carried over from the imple-

mentation of Robust HexEx by (Lyon et al.

2016). Note that we omit z as a parameter for

the predicate because the local neighborhood

of each point in the same parametric interior is

identical. This observation is particularly ben-

eficial for fine parametrizations in which multi-

ple hex-vertices are extracted on the same gen-

erator since we only need to enumerate the lo-

cal topology per generator, instead of per hex-

vertex.

Furthermore, since POINTSINTOc(c, c, d⃗) is always satisfied, the local topology extrac-

tion on cell-generators can be cut entirely. A cell-generator will always have six outgoing

propellers, one in each of the axis aligned directions in the parametrization.

Another observation that further reduces the required use of exact predicates is that an

integer-grid edge will never point from an element into an incident element in two oppos-

ing directions simultaneously with the opposite being true for directions from an element

along itself.

Algorithm 7 shows the propeller root enumeration, i.e. the enumeration of ”naked”

propellers without yet any interconnections, for edge-generators. The process for vertex-

generators is nearly identical, except that we need to iterate over all incident edges too,

whereas it is a simplification for face-generators in which one checks the predicate for

its one or two incident cells and the face itself. As explained, the process is skipped for

cell-generators.

The element on whose parametric interior the propeller lies is referred to as the holder

of the propeller, similarly to how we consider generators of hex-vertices. We refer to a

propeller with a holder of type HTYPE as a HTYPE-propeller and when aiming to be

more precise as a GTYPE-HTYPE-propeller where GTYPE is the type of the generator

of the propeller. For example, an edge-cell-propeller is a propeller on a generator edge

with a holder cell. Different types are illustrated in Fig. 15.

Propellers that got extracted on generator g are stored in a list Pg.

Due to non-identity transitions, propellers might have different images in different charts

24

of cells incident to their holder. All of them are explicitly stored and denoted by d⃗c(p)

for holder[p] ∼ c. To find a propeller with a certain direction in a certain cell chart, like

on Line 4 of Algorithm 10, an appropriate hash map is used.

Algorithm 7 enumeratePropellerRoots: Propeller Root Enumeration on an edge-hex-
vertex. We write (g, h, c, d⃗) for a propeller on generator g with holder h and direction

d⃗ in the chart of cell c
Input

e ∈ G ∩ E Edge generator

1: Pe ← [] //list of propellers on e
2: Pick any hex-vertex vh that got extracted on e.
3: for each incident cell c ∈ C and d⃗ ∈ {e⃗1, e⃗2, e⃗3} do //Edge-Cell-Propellers

4: if POINTSINTOc(e, c, d⃗) then

5: Pe ← Pe + [(e, c, c, d⃗)]

6: else if POINTSINTOc(e, c, −d⃗) then //Predicate cannot be true for two opposing directions simultaneously

7: Pe ← Pe + [(e, c, c, −d⃗)]
8: for each incident face f ∈ F and d⃗ ∈ {e⃗1, e⃗2, e⃗3} do //Edge-Face-Propellers
9: Pick any cell c ∈ C s.t. f ∼ c.

10: if POINTSINTOc(e, f, d⃗) then

11: Pe ← Pe + [(e, f, c, d⃗)]

12: else if POINTSINTOc(e, f, −d⃗) then //Predicate cannot be true for two opposing directions simultaneously

13: Pe ← Pe + [(e, f, c, −d⃗)]
14: Pick any cell c ∈ C s.t. e ∼ c. //Edge-Edge-Propellers

15: for each d⃗ ∈ {e⃗1, e⃗2, e⃗3} do
16: if POINTSINTOc(e, e, d⃗) then

17: Pe ← Pe + [(e, e, c, d⃗), (e, e, c, −d⃗)] //Predicate for two opposing directions is the same
18: break

5.1.2 Connecting Propeller Blades

Analogously, we define the predicate POINTSINTO for two orthonormal directions to be

true iff the integer-grid plane intersects the parametric interior.

POINTSINTOc(x, y, z, d⃗1, d⃗2) ⇐⇒ F(z, d⃗1, d⃗2) ∩ F̊ c(z) ̸= ∅

where x ∈ V ∪ E ∪ F ∪ C is a hex-vertex generator, y ∈ E ∪ F ∪ C is a propeller holder

and z ∈ F ∪ C is either y itself or an incident element of higher dimension, d⃗1, d⃗2 are

orthonormal and axis aligned, POINTSINTOc(x, y, d⃗1) is satisfied and z is any point

in the parametric interior F̊ c(x). The implementation of POINTSINTO using exact

predicates is relatively straightforward and not presented here.

First, we loop through each propeller on a generator and enumerate the orthonormal

directions in counterclockwise order satisfying the predicate as seen in Algorithm 8 for

edge-propellers. To achieve a counterclockwise ordering, one iterates over all incident

tets c ∼ holder[p] in CCW order and in each tet chart over all orthonormal directions to

d⃗2 ⊥ d⃗c(p) in CCW order. A consistent counterclockwise ordering guarantees (P1) and

(P2). The process for face-propellers is a simplification in which one only iterates over

the two cells incident to the holder where for one of the cells, POINTSINTO is evaluated

against the parametric volume instead of the interior to include directions along the face

25

itself. For cell-propellers, there are always four blades in total, one in each of the four

orthonormal directions, so no exact predicates are required.

Then, as seen in Algorithm 9 we loop through the propellers again and trace to the blade

propeller by rotating on the integer-grid plane from d⃗c(p) into the direction previously

enumerated.

The reason for iterating over the propellers twice instead of rotating to the blades directly

is that the blade connections are symmetric and only one rotational tracing per connected

propeller pair should be performed.

Algorithm 10 shows the rotational tracing along an integer-grid face through the parametriza-

tion mesh from a propeller to its blade. We start in the chart of a cell c and, until the

blade is found, exit the current cell into an adjacent one, through a face f of c. The face

through which the cell was entered is excluded. If the generator is a face, it must also be

the transition face. Otherwise, it must be incident to the generator edge or vertex and

intersect the integer-grid face. When rotating from a face-face- or edge-edge-propeller,

we will always find the blade in the first cell chart, hence we do not need to consider

these cases. Furthermore, we know that the transition face must be both incident to the

generator and not equal to the previous transition face which leaves only one option for

edge-generators, when the previous transition face is given. Figure 16 illustrates the ro-

tational tracing and Algorithm 11 shows the implementation of pickNextHalffaceToBlade

in detail.

5.1.3 Enumerating Hex-Corners

In preparation for the final step of the hex-mesh extraction, a list of hex-corners is gen-

erated. A hex-corner corresponds to a hex-vertex with an incident hex-cell and is repre-

sented as a triple of three distinct positively oriented propellers. Due to the counterclock-

wise ordering of the blades, each triple will be of the form (p, blades(p)[i], blades(p)[(i+1)

mod mp]) where mp = len(blades(p)). Only one triple is stored per hex-corner. If p corre-

sponds to an inner edge, the list of blades is considered cyclic whereas if it corresponds to a

boundary hex-edge, meaning its holder is a boundary tet-element, there is no cell between

the last and first blade (2). In this case, the triple (p, blades(p)[mp − 1], blades(p)[0]) is

disregarded.

26

Algorithm 8 enumerateDirectionsToBlades
Input

p Edge-propeller with holder e ∈ E and generator g ∈ V ∪ E

1: blades[p]← []; bladeDirs[p]← []

2: for each incident halfface (f, c) around the parametrized p in CCW order do

3: d⃗1 ← d⃗c(p))

4: D ← each of the four axis aligned d⃗2 ⊥ d⃗1 in CCW order

5: for i = 0, 1, 2, 3 do

6: F [i]← POINTSINTOc(g, e, f, d⃗1, D[i]) //integer-grid plane along face?

7: C[i]← POINTSINTOc(g, e, c, d⃗1, D[i]) //integer-grid plane into cell?

8: P [i]← F [i] or C[i] //integer-grid plane into anything?

9: if ∀i = 0, 1, 2, 3 : ¬P [i] then //no blades in this cell chart?

10: continue //move on with next cell

11: r ← 3 //ensure CCW blades order, since P [i] is only true for 1 to 3 directions per c.

12: while P [r − 1] or ¬P [r] do

13: r ← r − 1

14: for i = 0, 1, 2, 3 do

15: i← (r + i) mod 4

16: d⃗2 ← D[i]

17: if F [i] then //The direction along a face is stored in both incident charts

18: c′, τ ← other cell incident to f and transition function from c to c′

19: bladeDirs[p]← bladeDirs[p] + [[(c, d⃗2), (c′, τ (d⃗2))]]

20: else if C[i] then //For a direction into a cell, there is only one relevant chart

21: bladeDirs[p]← bladeDirs[p] + [[(c, d⃗2)]]

Algorithm 9 connectPropellerBlades
Input

p propeller with holder g

1: m← len(bladeDirs[p])

2: for i = 0, ..., m− 1 do

3: if blades[p][i] is defined then //blade connection was already set

4: continue

5: c, d⃗2 ← bladeDirs[p][i]

6: d⃗1 ← d⃗c(p)

7: p′, c′, τ ← rotateToBlade(p, c, d⃗1, d⃗2)

8: j ← index s.t. (c′, τ (d⃗1)) ∈ bladeDirs[p′][j]

9: blades[p][i]← p′; blades[p′][j]← p

Algorithm 10 rotateToBlade
Input

p, c, d⃗1, d⃗2 propeller on generator g, initial cell, initial directions of root and blade

Output

p′, c′, τ ′ blade propeller, final cell, transition from c to c′

1: p′ ← propeller with generator g s.t. d⃗c(p′) = d⃗2

2: τ ′ ← id

3: (f, c)← invalid halfface

4: while p′ /∈ Pg do

5: (f, c)← pickNextHalffaceToBlade(p, (f, c), c, d⃗1, d⃗2)

6: τ ← τ (f, c); τ
′ ← τ ◦ τ ′ //transition function from the chart of c through f and accumulated transition

7: (f, c)← (f, c).opposite //move into the chart of the adjacent cell

8: d⃗1, d⃗2 ← τ (d⃗1, d⃗2)

9: p′ ← propeller with generator g s.t. d⃗c(p′) = d⃗2

10: return p′, c, τ ′

27

Figure 16: Different cases to consider when rotationally tracing from a propeller root (red)
to its blade (blue). (FC): From a face-cell-propeller, there is only one possible transition face.
(EF): From an edge-face-propeller, the transition face must be incident to the generator but not
equal to the holder. (EC): From an edge-cell-propeller, we pick the face on the correct side. (V)
From a propeller with a vertex-generator, the rotation must go through the open ended triangle.

Algorithm 11 pickNextHalffaceToBlade: Note that this function will never be called
for cell-cell propellers, face-face-propellers and edge-edge-propellers and up to once for
face-cell propellers, making the other cases the only ones requiring exact predicates.

Input

p propeller on generator g

(f, c) entering halfface. Invalid or incident to g and c

c current cell chart

d⃗1, d⃗2 propeller root and blade directions in the chart of c

Output

(f ′, c) exiting halfface incident to c and not equal to (f, c) which is intersected by the integer-grid face

1: if g ∈ F then //Face-cell-propeller

2: return (g, c) //(FC): only one option

3: inFirstCell← (f, c) is invalid //still in starting chart?

4: if g ∈ E then

5: if ¬inFirstCell then //Edge-generator, not inFirstCell

6: return unique (f ′, c) s.t. f ′ ̸= f, g ∼ f ′ //only one option

7: if holder[p] ∈ F then //Edge-face-propeller, inFirstCell

8: return unique (f ′, c) s.t. f ′ ̸= holder[p], g ∼ f ′ //(EF): only one option

9: z ← fc(vh) //vh can be any hex-vertex with generator g

10: for (f ′, c) ∼ c s.t. f ′ ̸= f and g ∼ f ′ do

11: if g ∈ E then //(EC): Edge-cell-propeller, inFirstCell

12: (u, v, w)← fc((f
′, c)) ordered s.t. fc(g) = {u, v} //halfface parameters

13: orid2 ← ORI3D(u, v, z + d⃗1, z + d⃗2)

14: if orid2 = 0 then //face cuts through generator edge

15: return (f ′, c) //both faces incident to g would be ok

16: oriw ← ORI3D(u, v, z + d⃗1, w)

17: if orid2 = oriw then //face lies on correct side, see (EC)

18: return (f ′, c)

19: else //(V): Vertex-generator

20: (u, v, w)← fc((f
′, c)) ordered s.t. fc(g) = u //halfface parameters

21: ori1 ← ORI3D(u, v, u+ d⃗1, u+ d⃗2)

22: ori2 ← ORI3D(w, u, u+ d⃗1, u+ d⃗2)

23: if ori1 = ori2 then //Rotation goes through inner part of face triangle

24: return (f ′, c) //(both oris must be < 0)

25: if (ori1 = 0 and ori2 < 0) or (ori1 < 0 and ori2 = 0) then //Rotation goes through edge uv or uw

26: return (f ′, c)

28

5.2 Connecting Opposite Propellers

With the local topology having been extracted, the only thing left to do is to find the

adjacency relations between the hex-vertices. This is achieved by tracing the propellers

from each hex-vertex through potentially multiple cell charts in the parametrization mesh

as seen in Algorithm 12, similarly to how the propellers were connected to their blades.

To ensure finding the opposite blade for the connection offset according to Section 3.2,

pickNextHalffaceToOpposite (Algorithm 13) picks a face f of the current cell c, exclud-

ing the face through which c was entered, which satisfies E(u, d⃗1) ∩ F c(f) ̸= ∅ and

F(u, d⃗1, d⃗2) ∩ F c(f) ̸= ∅. To find a hex-vertex that has a given parameter in the chart

of a given cell in constant time as required on Line 7 of Algorithm 12, a hash map is

used.

Algorithm 12 connectPropellerOpposite: Tracing from a hex-vertex and propeller to
the opposite vertex and propeller

Input
vh Hex-vertex on some generator g
p1 Propeller on the same generator

1: if opposite[vh, p] is defined then //p already connected?
2: return
3: p2 ← blades[p1][0]

4: c, d⃗2 ← bladeDirs[p1][0][0]

5: d⃗1 ← d⃗c(p1)
6: z ← fc(vh)

7: v′h ← hex-vertex s.t. fc(v
′
h) = z + d⃗1 //look for opposite vertex in chart of c

8: (f, c)← invalid halfface
9: while v′h does not exist do

10: (f, c)← pickNextHalffaceToOpposite((f, c), c, z, d⃗1, d⃗2) //transition face
11: if f ∈ ∂F then //traced into boundary?, happens if (IGM2) is not satisfied
12: return //treat as error or simply leave (vh, p) without opposite

13: τ ← τ (f, c) //transition function from the chart of c through f

14: z, d⃗1, d⃗2 ← τ (z, d⃗1, d⃗2) //transition

15: v′h ← hex-vertex s.t. fc(v
′
h) = z + d⃗1 //look for opposite vertex in chart of c

16: (f, c)← (f, c).opposite //move into the chart of the adjacent cell

17: p′ ← propeller on the generator of v′h s.t. d⃗c(p′) = −d⃗1

18: j ←index s.t. (c, d⃗2) ∈ bladeDirs[p′][j]
19: opposite[vh, p] = (v′h, p

′, j) //opposite vertex, opposite propeller, connection offset
20: opposite[v′h, p

′] = (vh, p, j)

29

Figure 17: The next tet-cell is entered through the face which intersects the integer-grid edge
(red). If we trace through an edge or vertex, the secondary direction (blue) is considered (2,3).

Algorithm 13 pickNextHalffaceToOpposite
Input

(f, c) entering halfface. Invalid or incident to c

c current cell chart

z hex-vertex parameter in the chart of c

d⃗1, d⃗2 propeller root and blade directions in the chart of c

Output

(f ′, c) exiting halfface incident to c and not equal to (f, c) which is intersected by the integer-grid edge and by

the integer-grid face

1: for (f ′, c) ∼ c s.t. f ′ ̸= f do

2: (u, v, w)← fc((f
′, c))

3: if ORI3D(u, v, w, z) ≤ 0 or ORI3D(u, v, w, z + d⃗1) ≥ 0 then

4: continue //Root does not even cut through the face plane

5: oriuv ← ORI3D(u, v, z, z + d⃗1) //get the orientations of the three

6: orivw ← ORI3D(v, w, z, z + d⃗1) //tets formed around z, z + d⃗1

7: oriwu ← ORI3D(w, u, z, z + d⃗1)

8: if oriuv = orivw = oriwu then //all oris are < 0

9: return (f ′, c) //(1): Root does cut through inner part of face triangle

10: if any of these three oris is positive and any of them is negative then

11: continue //Root does not cut through the face triangle

12: //Otherwise, the root cuts through the triangles boundary (edge or vertex)

13: n← (oriuv = 0) + (orivw = 0) + (oriwu = 0) //Get number of edge intersections. 1 or 2

14: if n = 1 then //cuts through edge

15: cycle (u, v, w) s.t. oriuv = 0 //u, v is intersected edge

16: ori← ORI3D(u, v, z + d⃗1, z + d⃗2)

17: if ori= 0 then //Integer-grid plane cuts through edge

18: return (f ′, c) //(2b): both faces incident to edge would be ok

19: if ori= ORI3D(u, v, z + d⃗1, w′) then

20: return (f ′, c) //(2a): integer-grid face intersects triangle face

21: else //(2a): integer-grid face intersects other incident triangle face

22: return unique (f ′′, c) incident to intersected edge s.t. f ′ ̸= f ′′

23: else //n = 2, (3): cuts through vertex

24: cycle (u, v, w) s.t. oriuv = oriwu = 0 //u is intersected vertex

25: if ORI3D(v, u, z, z + d⃗2) < 0 or ORI3D(u, w, z, z + d⃗2) < 0 then

26: continue //z, z + d⃗2 is not on correct side

27: return (f ′, c) //(3a), (3b)

30

5.3 Extracting the Hex-Mesh

Figure 18: From a cor-
ner (p1, p2, p3), the adjacent
corners can be accessed via
the opposite (α) and oppo-
siteblade (γ) connections.

With the hex-vertices defined and all propellers intercon-

nected, all is set for the final step: The extraction of the

hex-cells. One iterates over all initially unvisited pairs of

hex-vertices and hex-corners on a common generator, for

each accessing the seven other hex-vertices and hex-corners

of the hex-cell using the opposite and oppositeblade connec-

tions as illustrated in Fig. 18 and marking the eight pairs

of hex-vertices and hex-corners as visited to not extract a

hex-cell multiple times.

The final hex-mesh is then stored in the .MESH format where

only vertices and cells are stored explicitly.

A complete overview of the pipeline of Fast HexEx is given

in Algorithm 14.

Algorithm 14 Complete Hex Extraction Pipeline
Input

M = (V, E, F, C) Manifold tetrahedral mesh
f Positively relaxed integer-grid-map

Output
Mh = (Vh, Ch) Manifold hexahedral mesh

1: extractTransitionFunctions()
2: sanitizeParametrization()

3: G← ∅
4: for x ∈ V ∪ E ∪ F ∪ C do //order: V, E, F, C
5: extractHexVertices(x) //Algorithm 1

6: for g ∈ G \ C do //implicit order: V, E, F
7: enumeratePropellerRoots(g) //Algorithm 7
8: for p ∈ Pg do
9: enumerateDirectionsToBlades(p) //Algorithm 8

10: for p ∈ Pg do
11: connectPropellerBlades(p) //Algorithm 9

12: enumerateHexCorners(g) //Section 5.1.3

13: for vh ∈ Vh do
14: g ← generator of vh
15: for p ∈ Pg do
16: connectPropellerOpposite(vh, p) //Algorithm 12

17: extractHexCells() //Fig. 18

31

5.4 Implementation

Figure 19: Simplified UML class diagram of Fast HexEx. To access entities, type specific
handles are used which include: VH (Vertex), HFH (HalfFace), CH (Cell), RH (Rotation), DH
(Direction), PH (Propeller), HCH (HexCorner).

The vertex- and topology-extraction algorithms have been presented in detail, and we

now briefly discuss how some of the data structures are stored and accessed. Like the

entities of OVM (vertices, (half-)edges, (half-)faces and cells), our propellers and hex-

corners are index based which means, they are stored in an array and accessing them is

achieved via special handle objects which are just integers, with additional type safety,

corresponding to the index of the object in the respective array. This means that, for

example, instead of opposite and blade connections of propellers being pointers or refer-

ences, they are propeller handles.

Similarly, the six possible coordinate permutations which are used in the vertex-extraction,

the six axis aligned directions and the twenty-four orientation preserving rotations are

globally stored and their respective handle objects are single bytes. For example, a direc-

tion handle object with index 0 refers to e⃗1. Their inverses and opposites are hard coded

and globally stored for quick access.

To access hex-vertices with a certain parameter in the chart of a certain cell, as required

during tracing, we use hash maps, one per tet-cell. The hash map of a certain cell is

quickly accessed using a cell-handle and the hex-vertex in the chart is accessed by first

mapping our integer parameter onto a non-negative integer, based on a global bounding

box around the whole parametrized mesh.

More specifically, each (x, y, z) ∈ [xmin, xmax]× [ymin, ymax]× [zmin, zmax] ⊂ Z3

is mapped to the unique (z − zmin) · Sy · Sx + (y − ymin) · Sx + (x− xmin) ∈ N0

32

where S = (xmax − xmin + 1, ymax − ymin + 1, zmax − zmin + 1) are the extents of the

parameter bounding box.

This allows us to use the trivial hash of integers instead of relying on the hash of 3d

vectors. Arrays that are known to be small, like the array of propellers per generator,

are linearly looked through.

An illustration of the structure of Fast HexEx is presented with Fig. 19.

The opposite of a propeller is stored in a separate array of the generator rather than

in the propeller object itself since the propellers are only explicitly stored for one hex-

vertex on the generator as explained before. Consider some generator with n extracted

hex-vertices (with indices from vmin to vmax, meaning n = vmax − vmin + 1) and m pro-

pellers per hex-vertex. Then, only m propellers are enumerated (with indices from 0 to

m− 1), even though there are m · n propellers in total. The same applies to the array of

hex-corners. Propeller 0 then contains the common data of the actual n propellers on the

n hex-vertices which all point in the same direction in an incident cell chart. However,

unlike the directions and blade indices, the opposite propeller differs per hex-vertex, so it

is stored separately. The opposite propeller of the propeller with index ip ∈ {0, ..., m−1}
on the hex-vertex with index iv ∈ {vmin, ..., vmax} is then the (n · ip + (iv − vmin))-th

element in the opposites array.

For cell-generators, the array of propellers stays empty and the propeller handle with

index i ∈ {0, ..., 5} implicitly refers to a propeller pointing in the direction given by the

same index i.

This system leads to our goal of minimal data redundancy.

33

6 Results

Now, we present and discuss some results of our algorithm on a range of examples of the

HexMe dataset (Beaufort et al. 2022) shown in Fig. 22 and compare it to the original

method.

The performance was evaluated using the command line tool of HexEx. Note that the

timings of reading and writing input and output files are excluded. A small performance

increase in the preprocessing was achieved by preliminary assuming that (IGM4) is sat-

isfied.

6.1 Timings

Model #T #H #H
#T

Robust Fast Fast
Robust

s09u bridge 100130 4590 5% 2.04s 0.91s 44%

s10u cuthemicylinder 28217 4986 18% 1.26s 0.33s 26%

s13u roundcube 41179 5312 13% 1.40s 0.44s 31%

s15c cylinder 28246 5238 19% 1.19s 0.30s 25%

s17c sphere 28028 4608 16% 1.07s 0.28s 26%

n03u skijump 8782 103218 1175% 14.38s 0.47s 3%

n04c prism 7122 4233 59% 0.84s 0.11s 13%

n10u qtorus 133239 6511 5% 3.03s 1.31s 43%

i01c m1 137233 49520 36% 10.92 2.04 19%

i09u m9 793884 7188 1% 12.66s 8.44s 67%

i11u s1 265131 4810 2% 4.30s 2.53s 59%

i14c s7 47107 5691 12% 1.68s 0.55s 33%

i18c s22 73118 5465 7% 1.99s 0.78s 39%

i22c s27 77162 6248 8% 2.22s 0.89s 40%

Table 2: Comparison of the old method of Robust HexEx and our new method of Fast HexEx.
#T and #H are the number of tetrahedral cells in the input mesh and the number of hexahedral
cells in the output mesh respectively. The higher the ratio of hex-elements to tet-elements, the
better our method compares to the original.

Fast HexEx outperformed Robust HexEx in all examples and optimized tasks. The results

are shown in Table 2 and in Fig. 20 which also shows the impacts of the individual tasks.

The most noticeable difference can be observed in the propeller tracing, i.e. the extraction

of hex-vertex adjacencies. As we do not create an OpenVolumeMesh, which would require

a lot of expensive topology checks, and instead represent the extracted hex-mesh by a list

of vertex positions and cells, the cell extraction is practically negligible. Furthermore,

as explained before, the postprocessing can be omitted entirely. As a result, our new

method is consistently faster than the original one, especially for parametrizations that

result in a hex-mesh with a lot of elements. In coarse examples, the preprocessing phase

is dominant, restricting the possible speedup.

34

Figure 20: Performance comparison of the original Robust HexEx and the new Fast HexEx
on the meshes shown in Fig. 22. The individual tasks are marked and stated in Table 3.

Plot color Task Robust HexEx Fast HexEx

Preprocessing extract transitions,

sanitize IGM

extract transitions,

sanitize IGM

Vertex

Extraction

hex-vertex extraction

(bounding box)

hex-vertex extraction

(rasterization)

Local

Connections

enumerate darts,

connect α1, α2, α3

enumerate propellers,

connect blades

Tracing

Connections

connect α0 connect opposites

Postprocessing dart annihilation,

vertex merging

-

Cell

Extraction

add hex-cells to OVM create list of hex-cells

Table 3: The common tasks of Robust HexEx and Fast HexEx.

35

6.2 Complexity Scaling

There are two main factors that contribute to the performance of the algorithm, namely,

the number of tet-elements and the number of hex-elements induced by the IGM. Un-

surprisingly, the impact of the former remains linear, however, Fast HexEx is especially

efficient for inputs where the latter is relatively large. The more refined the parametriza-

tion, the more we profit from the rasterization in the hex-vertex extraction and the local

topology extraction per generator instead of per hex-vertex. This is not surprising as in

such parametrizations, parametric volumes of tets contain multiple integer-grid points.

Conversely, for coarse parametrizations where most parametrized tets contain few or

no integer-grid points, these optimizations are less impactful and most time is spent in

preprocessing.

Figure 21: Comparison of the runtimes for a model with increasingly more hex-elements.
The original model contains 8782 tet-cells. With an unscaled parametrization (scaling factor 1),
the resulting hex-mesh contains 1256 hex-cells. A scaling factor of 12 leads to a hex-mesh with
123 · 1256 = 2170368 hex-cells. Note the significant difference in scale.

Figure 21 highlights our methods capability of handling inputs with increasingly more

hex-elements per tet-element. For the initial parametrization (#H
#T

= 14%), Robust HexEx

took 0.4 seconds and Fast HexEx took 0.1 seconds. Then, for the upscaled parametriza-

tion with 123 as many hex-elements (#H
#T

= 24714%), Robust HexEx took nearly 20

minutes whereas Fast HexEx took 3.3 seconds.

Even when ignoring such extreme cases, the inherent benefits of the propeller data struc-

ture compared to the dart data structure (less propellers than darts and only two types

of connections instead of four) are advantages applicable to all valid inputs.

36

6.3 Runtime Analysis

Table 4 shows the (asymptotic) runtimes of the newly implemented tasks in detail. Let

V, E, F, C be the number of input vertices, edges, faces and cells respectively and M =

V + E + F + C the number of tet-elements in total. Furthermore, we use L = 3

√
Ch

C

as a measure of the parametrization fineness where Ch is the number of resulting hex-

cells. While the runtimes of the hex-vertex extraction from vertices and edges remain

unchanged6, the rasterization of the faces and cells results in a reduced runtime by a

factor of L compared to checking every point in the bounding box7.

As propellers are enumerated only on a single hex-vertex per generator, providing most

propellers implicitly, both the propeller enumeration and the connecting of blades are

constant in L. On the other hand, all darts are explicitly enumerated, so the runtime is

cubic in L. Moreover, to find a specific dart in the chart of a tet-cell, the list of all darts

in the chart is iterated linearly, i.e. cubic in L, compared to our use of a hash map, which

is why all the connection algorithms for the darts are in O(ML3 · L3).

Task Robust HexEx Fast HexEx

extract hex vertices (vertices) O(V) O(V)

extract hex vertices (edges) O(EL) O(EL)

extract hex vertices (faces) O(FL3) O(FL2)

extract hex vertices (cells) O(CL3) O(CL2)

enumerate darts/propellers O(ML3) O(M)

connect α1, α2, α3/blades O(ML6) O(M)

connect α0/opposites O(ML6) O(ML3)

Table 4: Asymptotic runtimes of the individual tasks of Robust HexEx and Fast HexEx.

6If an edge is integer-aligned, the runtime is practically constant in L as no exact predicates are
required.

7If a face is integer-aligned, the runtime is reduced by a factor of L2 instead of L because all scanlines
are integer-aligned.

37

Figure 22: Example tet-meshes of the HexMe dataset and their respective hex-meshes
produced by Fast HexEx, visualized in OpenFlipper. From top left to bottom right:
s09u bridge, s13u roundcube, s17c sphere, n03u skijump, n04c prism, n10u qtorus, i11u s1,
i14c s7, i22c s27.

38

7 Conclusion

We presented Fast HexEx, an optimization of Robust HexEx by (Lyon et al. 2016) for

reliably extracting hex-meshes from tet-meshes with positively relaxed integer-grid maps.

Using rasterization techniques to find integer-grid points in the parametrization and the

new propeller data structure to define the resulting topology, we achieved a noticeable

performance improvement of HexEx, particularly for fine parametrizations.

7.1 Discussion

Lastly, we present a few ideas on how to further improve Fast HexEx:

1) Currently, we iterate all elements separately to avoid duplicate hex-vertices. Instead,

when evaluating the normal ORI3D checks for a tetrahedron, we could already determine

if the hex-vertex lies inside the tet, a face, an edge or a vertex. To avoid duplicates,

the property system of OVM might be used to store simple flags. This would allow us

to extract hex-vertices by only iterating the cells which could significantly improve the

runtime of the geometry extraction.

2) Certain tasks like the hex-vertex extraction or the local topology extraction could

profit from parallelization as they consist of multiple independent routines.

3) Non-identity transitions between charts of adjacent cells in the parametrization cause

the topology extraction to be considerably more complex than for a globally injective

parametrization with only identity transitions. However, as in practice, non-identity

transitions predominantly occur around singularities, with them making up only a small

portion of all transitions (mostly ≈ 5%), it might be worth detecting and storing trivial

regions in the form of blocks of adjacent cells in the parametrization beforehand and then

operate on the charts of the whole regions instead of the individual cells. This would both

trivialize the local topology extraction of hex-vertices in such regions and simplify tracing

while rasterizing them would be challenging.

39

References

Beaufort, Pierre-Alexandre, Maxence Reberol, D. Kalmykov, H. Liu, Franck Ledoux, and

D. Bommes (Oct. 2022). “Hex Me If You Can”. In: Computer Graphics Forum 41,

pp. 125–134. doi: 10.1111/cgf.14608.

Botsch, Mario, Stefan Steinberg, Stefan Bischoff, and Leif Kobbelt (Feb. 2002). “Open-

Mesh: A Generic and Efficient Polygon Mesh Data Structure”. In: url: https://

api.semanticscholar.org/CorpusID:15631664.

Brückler, Hendrik, David Bommes, and Marcel Campen (July 2022). “Volume parametriza-

tion quantization for hexahedral meshing”. In: ACM Transactions on Graphics 41,

pp. 1–19. doi: 10.1145/3528223.3530123.

Campagna, Swen, Leif Kobbelt, and Hans-Peter Seidel (1998). “Directed edges—a scal-

able representation for triangle meshes”. In: Journal of Graphics tools 3.4, pp. 1–

11.

Ebke, Hans-Christian, David Bommes, Marcel Campen, and Leif Kobbelt (2013). “QEx:

Robust quad mesh extraction”. In: ACM Transactions on Graphics (TOG) 32.6,

pp. 1–10.

Grünbaum, Branko and Geoffrey C Shephard (1969). “Convex polytopes”. In: Bulletin

of the London Mathematical Society 1.3, pp. 257–300.

Kraemer, Pierre, Lionel Untereiner, Thomas Jund, Sylvain Thery, and David Cazier (Jan.

2014). “CGoGN: N-dimensional Meshes with Combinatorial Maps”. In: isbn: 978-3-

319-02334-2. doi: 10.1007/978-3-319-02335-9_27.

Kremer, Michael, David Bommes, and Leif Kobbelt (2013). “OpenVolumeMesh–A ver-

satile index-based data structure for 3D polytopal complexes”. In: Proceedings of the

21st International Meshing Roundtable. Springer, pp. 531–548.

Liu, Heng, Paul Zhang, Edward Chien, Justin Solomon, and David Bommes (July 2018).

“Singularity-Constrained Octahedral Fields for Hexahedral Meshing”. In: ACM Trans.

Graph. 37.4. issn: 0730-0301. doi: 10.1145/3197517.3201344. url: https://doi.

org/10.1145/3197517.3201344.

Lyon, Max, David Bommes, and Leif Kobbelt (July 2016). “HexEx: Robust Hexahedral

Mesh Extraction”. In: ACM Trans. Graph. 35.4. issn: 0730-0301. doi: 10.1145/

2897824.2925976. url: https://doi.org/10.1145/2897824.2925976.

40

https://doi.org/10.1111/cgf.14608
https://api.semanticscholar.org/CorpusID:15631664
https://api.semanticscholar.org/CorpusID:15631664
https://doi.org/10.1145/3528223.3530123
https://doi.org/10.1007/978-3-319-02335-9_27
https://doi.org/10.1145/3197517.3201344
https://doi.org/10.1145/3197517.3201344
https://doi.org/10.1145/3197517.3201344
https://doi.org/10.1145/2897824.2925976
https://doi.org/10.1145/2897824.2925976
https://doi.org/10.1145/2897824.2925976

Möbius, Jan and Leif Kobbelt (2012). “OpenFlipper: An Open Source Geometry Process-

ing and Rendering Framework”. In: Curves and Surfaces. Ed. by Jean-Daniel Bois-

sonnat, Patrick Chenin, Albert Cohen, Christian Gout, Tom Lyche, Marie-Laurence

Mazure, and Larry Schumaker. Vol. 6920. Lecture Notes in Computer Science. 10.1007/978-

3-642-27413-8 31. Springer Berlin / Heidelberg, pp. 488–500. isbn: 978-3-642-27412-1.

url: http://dx.doi.org/10.1007/978-3-642-27413-8_31.

Pietroni, Nico et al. (Oct. 2022). “Hex-Mesh Generation and Processing: A Survey”.

In: ACM Transactions on Graphics 42.2, pp. 1–44. doi: 10.1145/3554920. url:

https://doi.org/10.1145%2F3554920.

Reberol, Maxence, Kilian Verhetsel, François Henrotte, David Bommes, and Jean-François

Remacle (Mar. 2023). “Robust Topological Construction of All-Hexahedral Boundary

Layer Meshes”. In: ACM Trans. Math. Softw. 49.1. issn: 0098-3500. doi: 10.1145/

3577196. url: https://doi.org/10.1145/3577196.

Ruiz, Antonio J. Rueda, Rafael Jesús Segura, Francisco R. Feito-Higueruela, Juan Ruiz

de Miras, and Carlos Javier Ogáyar (2004). “Voxelization of Solids Using Simplicial

Coverings”. In: International Conference in Central Europe on Computer Graphics

and Visualization. url: https://api.semanticscholar.org/CorpusID:15347116.

Shewchuk, Jonathan (Mar. 1996). “Robust Adaptive Floating-Point Geometric Predi-

cates”. In: Proceedings of the Annual Symposium on Computational Geometry. doi:

10.1145/237218.237337.

Solomon, Justin, Amir Vaxman, and David Bommes (July 2017). “Boundary Element

Octahedral Fields in Volumes”. In: ACM Trans. Graph. 36.4. issn: 0730-0301. doi:

10.1145/3072959.3065254. url: https://doi.org/10.1145/3072959.3065254.

41

http://dx.doi.org/10.1007/978-3-642-27413-8_31
https://doi.org/10.1145/3554920
https://doi.org/10.1145%2F3554920
https://doi.org/10.1145/3577196
https://doi.org/10.1145/3577196
https://doi.org/10.1145/3577196
https://api.semanticscholar.org/CorpusID:15347116
https://doi.org/10.1145/237218.237337
https://doi.org/10.1145/3072959.3065254
https://doi.org/10.1145/3072959.3065254

	Introduction
	Theoretical Foundation
	Geometry
	Orientations
	Mesh
	Implementation

	Integer-Grid Map

	Robust HexEx and Fast HexEx
	The Dart Data Structure
	The Propeller Data Structure
	Properties

	Vertex Extraction
	Rasterization
	Line Segment
	Triangle
	Tetrahedron
	Quadrilateral

	Robustness

	Topology Extraction
	Local Topology
	Enumerating Propellers
	Connecting Propeller Blades
	Enumerating Hex-Corners

	Connecting Opposite Propellers
	Extracting the Hex-Mesh
	Implementation

	Results
	Timings
	Complexity Scaling
	Runtime Analysis

	Conclusion
	Discussion

