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Figure 1: (a) Triangular surface mesh of a font acquired with a laser scanner. The mesh exhibits numerous small scale artifacts and handles
and is of (the incorrect) genus 8. (b) Parametrization based quad meshing at a coarse target edge length results in a heavily distorted
parametrization with undesired degeneracies and too many singularities too close to one another, even though a state of the art technique for
detail suppression [Ray et al. 2009] has been used. (c) Using our method, a parametrization reproducing only features suitable for the target
edge length is computed. (d) The resulting quad mesh has the correct genus 0.

Abstract

The most effective and popular tools for obtaining feature aligned
quad meshes from triangular input meshes are based on cross field
guided parametrization. These methods are incarnations of a con-
ceptual three-step pipeline: (1) cross field computation, (2) field-
guided surface parametrization, (3) quad mesh extraction. While
in most meshing scenarios the user prescribes a desired target quad
size or edge length, this information is typically taken into account
from step 2 onwards only, but not in the cross field computation
step. This turns into a problem in the presence of small scale ge-
ometric or topological features or noise in the input mesh: closely
placed singularities are induced in the cross field, which are not
properly reproducible by vertices in a quad mesh with the pre-
scribed edge length, causing severe distortions or even failure of the
meshing algorithm. We reformulate the construction of cross fields
as well as field-guided parametrizations in a scale-aware manner
which effectively suppresses densely spaced features and noise of
geometric as well as topological kind. Dominant large-scale fea-
tures are adequately preserved in the output by relying on the unal-
tered input mesh as the computational domain.
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1 Introduction

Automatic quad remeshing remains a topic of great interest and
importance. This is especially true as the proliferation of geome-
try acquisition equipment progresses. For the resulting wealth of
raw data, powerful geometric processing methods are required to
refine it into quad meshes suitable for further use and manipula-
tion. Especially field-guided parametrization-based quad meshing
methods such as Mixed-Integer Quadrangulation [Bommes et al.
2009], QuadCover [Kälberer et al. 2007], and Periodic Global
Parametrization [Ray et al. 2006] have proven to be powerful and
versatile. This family of methods typically follows a three-stage
approach as illustrated in Figure 2 (a): First a cross field is con-
structed on the input surface which defines guiding information for
the quad element orientation as well as singularity placement. Next,
the surface is parametrized into an integer grid map (as defined in
[Bommes et al. 2013a]) so that the canonical integer grid in the pa-
rameter domain induces a quad mesh on the input geometry. Here,
the singularities in the guiding field translate into irregular vertices.
An actual quad mesh is extracted from the parametrization in the
final step [Ebke et al. 2013].

Through the guiding field, these methods allow for a great amount
of user control and since both, the computation of the guiding field
and of the parametrization, can be formulated as well behaved op-
timization problems [Ray et al. 2008; Bommes et al. 2009], good
quality solutions can be obtained efficiently. Thanks to these prop-
erties, these methods not only enjoy popularity amongst researchers
but are also recently finding adoption in modeling and CAD soft-
ware products.

The state of the art methods all assume well behaved input geom-
etry, in the sense that it is noise-free, piecewise smooth, as well as
not too detailed nor too feature-rich. Small scale detail, whether
intentional (“features”) or artificial (“noise”), whether of geomet-
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ric or topological (small handles) kind, causes severe problems. In
the best case, such suboptimal input results in dis-
tortions (i.e. badly shaped quads, badly aligned
edges, too many and/or densely spaced irregular
vertices), in the worst case the algorithms fail en-
tirely or produce incomplete output meshes. This
is illustrated here on a sphere model, where the in-
put mesh on the top is well-behaved, the one on
the bottom contains noise.

In practice this turns out to be a significant prob-
lem as input geometry is commonly not perfectly
well-behaved. This is especially true for real world
geometry acquired through laser scanning and re-
lated techniques.

There are two different, competing paradigms that
can be followed in order to address this problem:

1. pre-process the input geometry in order to
make it conform to the requirements of the
quad meshing algorithms, or

2. make the meshing algorithms capable of ad-
equately dealing with ill-behaved geometry.

One approach following Paradigm 1 is manual pre-processing,
i.e. editing of the input mesh in order to make it well-behaved. For
the lack of viable alternatives in many scenarios, this (often tedious)
workflow is not uncommon. Where automation is desired or re-
quired one could simply treat all types of geometric detail as noise
and apply a smoothing algorithm to the input geometry, with the
goal of removing or attenuating it. Such approaches can lead to ac-
ceptable results—if a suitable choice from the plethora of smooth-
ing methods (ranging from simple Laplacian smoothing [Taubin
1995; Desbrun et al. 1999] to such advanced approaches as the re-
cently introduced conformal Wilmore flow based methods [Crane
et al. 2013]) is made. Unfortunately, there is no generally accepted
“best” method. Which method to pick depends on which prop-
erties are most important for a specific scenario: volume preser-
vation, feature preservation/restoration, few additional parameters,
suppression of only high frequencies or of all frequencies alike, etc.

Additionally, since unwanted handles (“topological noise”) remain
persistent under geometric smoothing, all of the mentioned meth-
ods may have to be accompanied by topological mesh repair al-
gorithms (e.g. [Guskov and Wood 2001; El-Sana and Varshney
1997; Zhou et al. 2007; Bischoff et al. 2005]) which make such
an approach even more challenging to implement and to tune, im-
pact the run time and potentially introduce new artifacts as outlined
in [Attene et al. 2013]. This variation of the generic quad meshing
pipeline is illustrated in Figure 2 (b).

In the light of these complications implied by Paradigm 1 we follow
Paradigm 2 and introduce a general solution to make parametriza-
tion based quad meshing algorithms perform well on ill-behaved
input geometry. Our approach requires no additional parameters,
which would need model or application dependent tuning. Further,
it is non-destructive in the sense that it uses the original, unaltered
input mesh as its computational domain which allows for high geo-
metric fidelity of the output mesh. Finally, our approach is simpler
to implement and more efficient than the advanced additional meth-
ods required by Paradigm 1. Figure 2 (d) illustrates the conceptual
pipeline behind our approach.

1.1 Related Work

Our work builds on previous research in the areas of quad remesh-
ing and the construction and processing of cross fields on surfaces.
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Figure 2: Omitting the colored boxes, the left side (a) illustrates the
generic parametrization based quad meshing pipeline. The red ad-
ditions (b) reflect Paradigm 1 to deal with ill-behaved input meshes.
The blue addition (c) reflects the method from [Ray et al. 2009]
which may or may not be combined with (b). The right side (d)
illustrates our approach which is in line with Paradigm 2.

1.1.1 Quad Remeshing

An overview of different quad remeshing methodologies can be
found in the survey [Bommes et al. 2013b]. Our solution applies to
the class of field-guided parametrization-based methods, first pro-
posed in [Ray et al. 2006], subsequently improved in [Kälberer
et al. 2007] and [Bommes et al. 2009], and extended in [Kovacs
et al. 2011; Panozzo et al. 2014]. In such methods, the overall quad
remeshing problem is split into three sub-steps, namely cross-field
computation, integer-grid parametrization and quad mesh extrac-
tion out of the parametrization. For the last step, recently a ro-
bust method has been proposed in [Ebke et al. 2013] whose specific
properties we exploit in Section 6. Furthermore, techniques to in-
crease robustness in this context were introduced [Bommes et al.
2013a; Lipman 2012; Myles et al. 2014].

Since the field-guided pipeline proved to be powerful, generaliza-
tions to different input data like point clouds [Li et al. 2011] or
range scans [Pietroni et al. 2011] were developed as well. Our ap-
proach can similarly be understood as a generalization of the above
methods to the case of input geometry that contains detail smaller
than the desired resolution of the output quad mesh.

1.1.2 Cross Fields

Apart from complete quad remeshing pipelines there are several
works that solely focus on the task of cross field generation [Hertz-
mann and Zorin 2000]. Some rely on prescribed singularities [Pala-
cios and Zhang 2007; Ray et al. 2008; Crane et al. 2010; Lai
et al. 2010], others determine a suitable singularity configuration
automatically [Bommes et al. 2009; Panozzo et al. 2012; Knöppel
et al. 2013; Diamanti et al. 2014]. All these methods search for
the smoothest cross field (in terms of some discrete field curvature
notion) potentially subject to certain constraints. In addition, there
are methods which only compute a singularity configuration but no
cross field [Ben-Chen et al. 2008; Springborn et al. 2008; Myles
and Zorin 2012].

Since none of these methods incorporate an explicit concept of
scale, noise and small scale detail in the geometry, they necessitate
numerous singularities within the smoothest available cross field.
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Figure 3: The two rows of pictures show an orthographic view of different cross fields for the same section (red frame) of the cuboid with
geometric noise depicted on the left. As we increase the standard deviation σ of the Gaussian kernel used for the Gaussian curvature
smoothing (top row, [Ray et al. 2009]) or for the normal smoothing (bottom row, our approach) the cross fields become smoother. While
using our approach (bottom) a perfectly smooth, straight cross field is obtained for increasing σ, it remains imperfect for any σ when using
the approach of [Ray et al. 2009] (top) due to the specific cross orthonormality concept. Our crosses, however, are defined in filtered tangent
planes (which here converge to the viewing plane). The pictures at the far right demonstrate the behavior for another mesh with periodic
detail structures rather than noise. Again, a straight cross field is constructed by our method (bottom), while the cross field computed using
[Ray et al. 2009] (top) exhibits severe repetitive distortions.

The only manner in which some of these methods take some form
of scale into account is through the adjustable radius of the em-
ployed principal curvature direction estimators that provide initial
directions. The further processing, modification, smoothing, inter-
polation, etc., is then, however, again performed directly at the scale
of the input mesh resolution.

The cross field related technique presented in [Ray et al. 2009] can
be seen as a first approach into the direction of Paradigm 2 intro-
duced above. In that work, the cross field structure is controlled
by first smoothing the scalar field representing the Gaussian curva-
ture of the input mesh, and then constructing a matching tangential
transport with respect to which the smoothness of a cross field can
be measured. The amount of Gaussian curvature smoothing influ-
ences the structure of the resulting cross field and, as demonstrated
by the authors, this allows to effectively reduce the number of sin-
gularities which are usually caused by small scale details in the in-
put surface. However, this method only addresses the cross field
construction step, where tangential transport suffices to measure
smoothness. For the quad meshing scenario also the parametriza-
tion step needs to be considered. Furthermore, this method uses
crosses which are orthonormal with respect to the original surface
while the field smoothness is measured with respect to the tan-
gential transport of the intrinsically smoothed surface. This dis-
crepancy can lead to distortions (cf. Figure 3) which carry over to
the field-guided parametrization. Finally, note that only geomet-
ric ill-behavedness is addressed: the Gaussian curvature induced by
small handles in the input geometry cannot be cancelled out locally
through smoothing. As a result, the corresponding singularities do
not vanish but are only slightly dispersed. This problem is illus-
trated in Figure 4.

1.2 Contribution

To overcome the problems of the existing methods we propose
a solution which equips the input mesh with an alternative (non-
orthogonal) normal field that respects the desired target mesh reso-
lution and suppresses detail too small to be adequately reproduced.
Varying target resolution (a so-called sizing field) can be taken into
account as well. All relevant aspects (like field smoothness, field
orthogonality, field normality, parametrization fairness, and con-

straints) are then expressed and evaluated with respect to this setup
based on alternative normals and tangent planes. This way we are
able to effectively prevent small scale geometric detail from being
carried over into the guiding field or the parametrization, and thus
into the resulting quad mesh.

When constructing the alternative normal field we go so far to even
make use of local inversions, where areas in the parameter do-
main become negative. This happens in such a manner that ulti-
mately small scale folds, protrusions, and even topological handles
are “ironed over” and flattened (thus appropriately cancelled) rather
than unfolded into the parametric domain. This prevents distortions
and problematic singularities that would otherwise occur. Figure 5
illustrates this idea.

Due to this novel robustness to ill-behaved input, the need for ex-
pensive pre-processing is eliminated.

2 Concept

The idea behind our approach may be pictured using the following
conceptual image:

State-of-the-art approaches construct cross fields and parametriza-
tions which are smooth with respect to the standard metric on the
(ill-behaved) input surface. Our approach can be thought of as

(a) (b) (c)

Figure 4: (a) A small scale handle and the cross field singularities
surrounding it (b) remain persistent under smoothing. (c) Using
the method from [Ray et al. 2009] the singularities are dispersed
slightly but persist. The small spike in the background is effectively
suppressed using either method. As shown in Figure 12 this config-
uration is properly handled by our method.
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Figure 5: Geometry with small scale features (a) is parametrized
(b) in order to extract a mesh from the parametrization (c). The
upper row illustrates the process with a small target edge length
where the feature (red) is reproduced in the output mesh (c top). In
the bottom row a large target edge length is chosen. Our method
deliberately creates a partially flipped parametrization (b bottom).
Flipped and regular elements in the parametrization cancel out one
another so that the small scale feature is not reproduced and does
not introduce length distortion in the output (c bottom).

instead measuring smoothness (and orthogonality, normality, etc.)
within a well-behaved shell surrounding the surface. This is illus-
trated using a 2D example in Figure 6. In this shell, lengths (and
in 3D also angles) are not measured in a standard, Euclidean man-
ner but, conceptually, within a subspace orthogonal to a vector field
(red) – which we construct as a discrete filtered version of the in-
put’s normal field (cf. Section 3). To achieve this, we basically ex-
press all measurements with respect to local projections of the orig-
inal geometry into the filtered tangent planes defined by the filtered
normals. This projection can even affect the orientation. In Fig-
ure 6 the intriguing properties of this concept are illustrated. Most
importantly, we also define crosses to live (and be orthonormal) on
the filtered tangent planes, rather than on the surface itself.

All formulations are such that they are equivalent to traditional for-
mulations for the case that the filtered normal field is orthogonal to
the given surface.

It is worth noting that the projections of the mesh’s individual faces
into their respective filtered tangent planes do not necessarily con-
stitute a globally consistent smooth surface. In our approach we
can, however, conveniently restrict ourselves to local considera-
tions only – of individual triangles (for the parametrization), pairs
of triangles (for cross field smoothness), or 1-rings (for curvature
evaluation). Therefore, neither the conceptual shell nor a complete
hypothetical surface orthogonal to the filtered normal field actually
need to be constructed in our method.

Note that in certain cases (when there are no folds and no handles),
smoothing of the input mesh as discussed in Section 1 can be con-
sidered as constructing a surface which is (more or less) close to
orthogonal to the filtered normal field – but whose normal field is
typically less smooth as it inherently obeys the integrability condi-
tion. From a theoretical perspective this global consistency of the
surface is appealing. However, it is unclear whether this would lead
to any practical advantage. We only identified and observed disad-
vantages (in addition to the restricted applicability) as discussed in
Sections 1 and 7.

2.1 Setup

Our approach is quite generic and could be used in conjunction
with various field generation methods and various parametrization
strategies. We demonstrate it here using the period-jump based
cross field representation proposed in [Li et al. 2006] and the field-
guided parametrization functional proposed in [Ray et al. 2006;
Bommes et al. 2009], as these are quite prototypical: they have been
used in numerous follow-up works like [Ray et al. 2008; Kälberer
et al. 2007; Bommes et al. 2009; Crane et al. 2010; Panozzo et al.

a b c d e

Figure 6: Illustration of the well-behaved shell (grey) with its
smooth normal field (red). Measured with respect to this field, seg-
ment a is much shorter than segment b, although they are of the
same length in the metric of the original surface (blue). Segment c
even has a negative length, basically cancelling out the fold. The
same holds for segments d and e, effectively cancelling out the small
handle.

2012; Bommes et al. 2013a; Ray et al. 2009; Campen and Kobbelt
2014b; Li et al. 2011; Pietroni et al. 2011]. In particular, we
make use of the unified mixed-integer formulation introduced in
[Bommes et al. 2009]1.

We thus use the following generic quad remeshing pipeline for
demonstration:

1. estimation (and filtering) of principal curvature directions, or
manual specification of constraint directions,

2. construction of a smooth cross field based on these directions,

3. parametrization of the input mesh guided by the cross field,

4. extraction of the quad mesh defined by the canonical integer
grid in the parameter domain.

All four steps are affected by our approach, most importantly of
course step 2 and 3. In the following we detail the construction of
the filtered normal field (Section 3) and then explain how to refor-
mulate the individual steps of the pipeline accordingly.

3 Smooth Normals

For a meshed surface M = (V,E, F ) with vertices V , edges E,

faces F , we compute an alternative, filtered normal field N̂ =
{n̂1, . . . , n̂|F |} (which is detached from the actual surface, i.e. not
necessarily orthogonal). The key idea behind this is that geometric
features are reflected by high variance in the original normal field
N . In order to prevent sets of features which are too densely spaced
to be representable by the desired target element size from carrying
over into the cross-field, we apply a generalized Weierstrass trans-
form to this normal field. I.e. we convolve it with a suitably sized

Gaussian kernel Gσ , to obtain a new normal field N̂ where densely
spaced features are merged (cf. Figure 7):

N̂σ(p) = (N ∗Gσ)(p) =

∫

M

N(q)Gσ(dist(p− q))dq

with

Gσ(x) =
1

2πσ2
e−x2/(2σ2)

1A variation of the globally optimal cross field construction approach of

[Knöppel et al. 2013] could also be used, but does not immediately allow for,

e.g. direct control over singularity positions, indices, or sparse alignment

constraints – which is often of interest in the quad remeshing context.
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Figure 7: Top: features in the normal field (modeled as Dirac
impulses) closer to one another than the target edge length s get
merged into one maximum when convolved with a Gaussian kernel
with σ ≥ s/2. Bottom: features with wider spacing are reproduced
as two distinct maxima in the convolved field.

where dist(p − q) signifies the geodesic distance between p and

q on M. Note that N̂σ is not a unit vector field in general. Thus,
we renormalize it prior to any further use. In practice, we truncate
the Gaussian kernel by integrating over Br(p) ⊂ M, which is the
neighborhood of p up to some geodesic distance r. A choice of
r = 2σ proved sufficient.

For the purpose of discretization we assume a constant normal per
face f , evaluated at its barycenter c(f), and get

N̂σ(f) =
∑

f ′∈B2σ(f)

N(f ′)

∫

f ′

Gσ(dist(c(f)− q))dq.

We further approximate the integral using a sample in the barycen-
ter c(f ′) of the faces f ′ and obtain

N̂σ(f) ≈
∑

f ′∈B2σ(f)

N(f ′)Gσ(dist(c(f)− c(f ′)))Af ′

where Af ′ = A(f ′∩B2σ(f)) is the area of the portion of f ′ which
lies inside the truncated kernel.

Note that, instead of explicitly evaluating the above sum per face,
one can also employ diffusion flow to implicitly convolve the nor-
mals [Desbrun et al. 1999].

The standard deviation σ controls the breadth of the filter kernel
Gσ . We choose σ dependent on the prescribed target edge length s
so that features in the normal field closer to one another than s get
merged when convolved with Gσ . In order to derive a suitable σ
we imagine two infinitely sharp features with distance s on an oth-
erwise flat curve. We model these features as a function f : R → R

with two Dirac impulses at ±s/2. As illustrated in Figure 7, if we
convolve f with Gσ choosing σ too small, two distinct local max-
ima persist, and we have a local minimum, i.e. positive curvature,
at x = 0. Choosing σ sufficiently large we yield negative curvature
at x = 0 and thus a single maximum:

d2

d2x2

∫ ∞

−∞

f(q)Gσ(x− q)dq

∣

∣

∣

∣

x=0
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⇔
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Gσ(x−

s

2
) +Gσ(x+

s

2
)

∣

∣

∣

∣

x=0

≤ 0

⇔ σ(s) ≥
s

2
.

While the choice of σ may be left to the user as a degree of freedom
in a setting where more interactivity is desired, we advertise the
choice of σ = s/2 in all settings where an additional parameter

in the quad meshing pipeline is unwanted. In agreement with the
theoretical justification, our experiments confirm that this choice of
σ generally yields very good results. ni n̂i

We refer to the tangent planes defined by the fil-

tered normals n̂i = N̂σ(fi) as filtered tangent
planes in the following. The filtered tangent planes
can be computed at almost no computational over-
head as the neighborhood determination has to be
done for the curvature estimation (shape operator, etc.) anyway.

It is worth noting that averaging of vertex normals from 1-ring face
normals (which can be interpreted as a simplistic variant and special
case of our normal filtering) was reported to already show beneficial
effects on the cross field structure [Myles et al. 2010].

Sizing Field Instead of targeting a uniform quad element size s,
we may also take a varying element sizing field S : F → R

>0 into
account if desired. In this case σ varies per face, i.e. we have σ(f)
(e.g. σ(f) = S(f)/2) and generalize to

N̂S(f) =
∑

f ′∈B2σ(f)(f)

N(f ′)Gσ(f)(dist(c(f)− c(f ′)))Af ′ .

4 Normal Based Cross Fields

To draw benefit from our filtered tangent planes in the construction
of the guiding field for the subsequent parametrization, we derive
a formulation for the cross field formalism [Li et al. 2006] based
entirely on the filtered normal vectors.

Given a piecewise linear surface M = (V,E, F ) equipped with

filtered face normals N̂ = {n̂1, . . . , n̂|F |} we define a (discrete)
filtered cross field on that surface to consist of four vectors per
face, i.e. wk : F → R

3, k = 0, 1, 2, 3, such that wk(fi) ⊥ n̂i,
and for orthonormality require ‖wk(fi)‖ = 1 and wk(fi) =
(

Rotn̂i
90

)k
w0(fi), where Rotn̂90 is a 90-degree rotation around the

axis n̂. We use (wk)i as a shorthand for wk(fi).

di (w0)i

(w1)i

θi

We employ the angle based definition introduced
in [Li et al. 2006]: given arbitrary reference di-
rections D = {d1, . . . ,d|F |}, di ⊥ n̂i per tri-
angle, a cross field is uniquely defined by angles
Θ = {θ1, . . . , θ|F |} where θi describes the angle
between di and w0(fi) in the filtered tangent plane.

This, so far, defines an individual cross per face. Using so-called
period jumps pij ∈ Z per edge one specifies which of the four
directions in a face corresponds to which of a neighboring face.
This flexible association enables the representation of singularities
with fractional index [Li et al. 2006].

4.1 Measuring Smoothness

In order to measure the smoothness of the cross field we need a
way to measure the deviation γij between the two directions θi, θj
of a pair of neighboring faces (i, j). Since each direction is defined
through an angle θ with respect to its respective reference direction
d, by computing a signed transition angle κij between di and dj

we can compute the deviation as

γij = θi + κij +
π

2
pij − θj .

κij can be computed as the signed angle between di and dj after
rotating them into a common plane using a hinge map [Li et al.
2006]. While the hinge axis usually is the common edge eij of the



pair of faces, this does not fit our filtered setup as eij does not lie
in the filtered tangent planes in general. Instead we compute the
appropriate hinge axis êij from the filtered normals:

êij = n̂i × n̂j

and can then evaluate

κij = ∡(di, êij) + ∡(êij ,dj).

Note that when using the original normals, this definition is equiva-
lent to the usual formulation. If ni and nj are identical, i.e. êij has
zero length, the reference directions already lie in the same plane
and κij = ∡(di,dj) is used instead.

With these definitions the discrete field curvature of the filtered
cross field can be expressed as [Ray et al. 2008; Bommes et al.
2009]:

Esmooth =
∑

eij∈E

wijγ
2
ij . (1)

Note that the weights wij are simply chosen to be 1 in most re-
lated methods, e.g. [Ray et al. 2008; Bommes et al. 2009; Li et al.
2006]. Experiments show that the benefit of using proper weighting
(depending on the face geometry) often is minuscule. In fact, for
all results presented in this work, uniform weights were used. For
completeness we can, however, also adapt the proper dual cotan-
gent weights introduced for this setting in [Crane et al. 2010] to our
setup, as we show below.

4.2 Weights

The wij in Equation (1) account for size and shape differences
between faces. [Crane et al. 2010] advocate the use of wij =
(cot(φij) + cot(φji))

−1, where φij and φji are the angles of the
two sectors opposite to eij .

In our setting it is appropriate to compute these weights based on
the projections of these sectors into the filtered tangent planes. We
thus compute the projected dual cotangent weights

wij = (cot(φ′
ij) + cot(φ′

ji))
−1

with φ′
ij = ∡(a′

ij ,b
′
ij) where

a
′
ij = pn̂i

(aij) and b
′
ij = pn̂i

(bij).

eijaij

bij

φij φji

Here aij and bij represent the edge vectors of the
sector corresponding to φij on the original input
mesh as illustrated on the right. pn̂ is the projec-
tion into the filtered tangent plane along the filtered
normal n̂:

pn̂i
(v) = (Id−n̂in̂

⊺

i )v.

Thus, φ′
ij and φ′

ji are the angles of the corners opposite to eij in the
projected images of fi and fj . Note that since each face is projected
along its individual filtered normals, in general images of adjacent
faces do not match up (e.g. in Figure 1, the average length mismatch
of the common edge is 0.18%, the maximum 4.4%). Thus the pro-
jected dual cotangent weights do not exacly correspond to an actual
surface. Notwithstanding this, they do behave in a plausible way
according to all our experiments. Furthermore, they converge to
the original dual cotangent weights when the Gaussian kernel size
approaches 0 (σ → 0), i.e. when the filtered normals are identical
to the original normals they are equivalent, and they converge to
weights of an actual surface when pairs of adjacent filtered normals
converge, e.g. when σ → ∞.

4.3 Alignment Constraints

The minimizer of Esmooth in Equation 1 gives us a cross field which
is smooth but which is not yet aligned along the principal curvature
directions (or user defined directions) where desired. To achieve
this, we can constrain some of the θi to prescribed angles, eliminat-
ing these variables from the optimization problem. The directions
of (minimal or maximal) principal curvature are typically computed
using the Shape Operator [Cohen-Steiner and Morvan 2003] and
take the form of a unit vector mi ∈ R

3 for a face fi. Instead of
projecting mi onto the face as usual, we project it into the filtered
tangent plane to compute the prescribed angle θi:

θi := ∡(di,pn̂i
(mi)).

4.4 Period Jumps

In order to evaluate Esmooth in Equation 1 what is still missing are
the period jumps pij . Period jumps can either be prescribed [Li
et al. 2006] (which is equivalent to prescribing singularity positions
and indices) or they can be left as a degree of freedom in a mixed
integer problem [Bommes et al. 2009] which is the approach we
took in our experiments.

4.5 Gaussian Curvature

Once we have computed a minimizer for Esmooth we need to evalu-
ate the cross field index I(vi) for every vertex vi in order to deter-
mine the position and degree of the singularities [Li et al. 2006]:

I(vk) =
1

2π

(

K(vk) +
∑

eij∈Ek

κij

)

+
1

4

∑

eij∈Ek

pij

where Ek specifies the set of edges incident to vk, and K(vk) is
the Gaussian curvature at vertex vk. In order to rely exclusively on
the filtered normals, we compute the Gaussian curvature from the
signed area of the spherical polygon spanned by the filtered normal
vectors n̂i of the faces incident to vk [Meek and Walton 2000].

5 Parametrization

The second stage in the three stage pipeline is the computation of
a parametrization g : M → R

2 guided by the cross field from the
first stage. If g is an Integer Grid Map [Bommes et al. 2013a] the
canonical grid of integer iso-lines in R

2 induces a quad mesh on
M through g.

The parametrization g is defined on the mesh – the cross field which
is supposed to guide the parametriztion, however, lives in the fil-
tered tangent planes. We thus project the crosses from their filtered
tangent planes onto the faces along the filtered normals:

(w̄k)i = (wk)i − n̂i
n
⊺

i (wk)i
n
⊺

i n̂i
.

Here the w̄k are the projections of the cross field vectors wk which
live in the filtered tangent planes.

Note that this results in non-orthonormal crosses whenever ni 6=
n̂i. The parametrization functional used in [Bommes et al. 2009] is
only suitable for orthonormal crosses. We modify it and compute
the parametrization as the minimizer of

Eorient =
∑

f∈F

EfA(f̂)
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Figure 8: (a) Example of an overlapping small scale detail. As
the orientation of the arrows indicates, the parametrization flips
locally. (b) After extraction of the quad mesh, flipped and non-
flipped areas have cancelled out one another and the geometric
influence of the feature is minimal.

with
Ef =

∥

∥∇g ·
[

w̄0 w̄1

]

− S(f) Id
∥

∥

2

with respect to the constraints laid out in [Bommes et al. 2009]. In-
tuitively, the (tangent) cross vectors w̄0 and w̄1 are mapped from
the faces to the parametrization domain R

2 via the map’s differ-
ential (the Jacobian ∇g). There they should ideally coincide with
the coordinate axes and have length S(f), as then the integer grid
mapped back to the face is aligned with the cross and has the de-
sired spacing S(f). Note that for proper weighting the area of the

projected faces f̂ is used in Eorient.

The variational formulation readily allows for easy modification
and extension to include various types of useful hard or soft con-
straints, e.g. for feature alignment [Bommes et al. 2009] or connec-
tivity [Myles et al. 2010].

6 Quad Mesh Extraction

An important consequence of the non-orthonormal nature of the
projected cross-field is that crosses can be flipped. This common
case arises when small scale features form overlaps as is illus-
trated in Figure 5 which, after normal filtering lead to flipped nor-
mals. Flipped crosses in Eorient promote flipped triangles in the
parametrization which lead to so-called fold-over configurations.
In principle, fold-overs violate the Integer Grid Map condition and
lead to non-quad meshes. If, however, we interpret flipped triangles
as having a negative area that cancels out an overlapping positive
area, they neutralize the geometric influence of the affected small
scale features which is a most welcome effect. Through our choice
of the Gaussian kernel breadth σ = s/2 we only provoke such
fold-overs on a scale well below the target edge length s. Such
fold-overs are handled in the desired way, cancelling out overlap-
ping regions, by the recently introduced quad extractor QEx [Ebke
et al. 2013] which we employ in our approach (cf. Figure 8). This
way we are able to reliably and robustly extract quad meshes from
the generated parametrizations.

It should be noted that apart from the fold-overs deliberately in-
troduced through flipped crosses, the least-squares parametriza-
tion may produce fold-overs in certain situations as detailled
in [Bommes et al. 2013a; Ebke et al. 2013]. Such fold-overs can
be prevented using a stiffening approach [Bommes et al. 2009] or
constraints [Bommes et al. 2013a; Lipman 2012]. Alternatively,
they can be admitted and gracefully dealt with using QEx. We went
with the latter option in all of our experiments.

7 Results and Comparison

In Section 1.1.2 we made the point that the method in [Ray et al.
2009] merely considers the cross field generation and does not of-

Figure 9: Two parametrizations and the resulting quad meshes
of the same input mesh. In the orthographic view (center row) it
becomes apparent that the additional area introduced by the ac-
cordion causes a length distortion using the method of [Ray et al.
2009] (left column) wheras using our method the accordion has lit-
tle effect on the parametrization (right column).

fer a way to introduce a sense of scale into the parametrization pro-
cess which can lead to distortions in the output quad mesh. Fig-
ure 9 demonstrates this effect. Here, [Ray et al. 2009] successfully
manages to suppress singularities at the small scale features but the
length distortion caused by the accordion structure is so severe that
two quad loops at half the width of the target edge length appear.
The parametrization generated by our method remains unaffected
by the accordion.

Figure 12 demonstrates how our method is able to extract quad
meshes that are unaffected by small scale handles on the input ge-
ometry and exemplifies the fact that smoothing approaches as well
as the method of [Ray et al. 2009] always reproduce such handles
with densely spaced singularities. In Figure 10 we demonstrate the
shortcomings of Laplacian surface smoothing in combination with
the stock Mixed-Integer Quadrangulation approach on a real world
laser scanned mesh with a number of topological and geometrical
artifacts.

In Figure 11 we show a number of real-world input meshes quad
meshed using our approach. The images of the plain input triangle
meshes show the singularities that are generated when computing a
non scale-aware crossfield [Ray et al. 2008] which, in all of these
examples are so densely spaced that they are only reproducible by
excessively fine quad meshes. With our method we were able to
extract sensible, watertight quad meshes at a wide range of target
edge lengths for all input meshes. Only the BUDDHA mesh rep-
resents a special case as explained in Section 8. The BOLTDISK

mesh demonstrates the ability of our method to incorporate feature
alignment constraints (amongst all other common parametrization
constraints).
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Figure 10: The FONT mesh (c.f. Figure 1) with (a) 0, (b) 30 and (c) 100 iterations of Laplacian smoothing applied to it. Computing a
cross field using the traditional Mixed-Integer Quadrangulation approach yields 1238, 147 and 85 singularities, respectively. The excess of
singularities in the unsmoothed version (a) and thus the excessive number of integer variables in the resulting parametrization optimization
problem prevents finding a parametrization within reasonable time. The parametrizations of the smoothed versions (b) and (c) suffer from the
remaining badly placed singularities as well as from the topological noise. This can be witnessed in the magnifications of a spike (top) and a
small handle (bottom). While the spike is manifold, it suffers from severe self-intersections and is thus not completely eliminated even after
a considerable amount of smoothing iterations (c). The handles and their accompanying singularities persist after any number of iterations
and thus will always ruin the parametrization. Even though the parametrization in (c) roughly looks like a quad mesh on a macroscopic level,
a quad mesh cannot be extracted out of it due to the microscopic artifacts around the singularity clusters.

8 Limitations and Future Work

We showed that our method is robust against geo-
metrical and topological artifacts in the input ge-
ometry. The input quality in terms of triangle
shape is not important either as demonstrated in
the images on the right where two planar meshes,
one with a mostly isotropic triangulation, the other
one with a highly anisotropic triangulation are
parametrized using our method and yield almost
equivalent results. Also, the STATUETTE input
mesh in Figure 11 exhibits highly anisotropic tri-
angles with aspect ratios of up to 502 and inner
angles ranging from .2 up to 179.5 degrees. How-
ever, the robustness against holes in the input mesh is limited: while
the normal smoothing, cross field computation and parametrization
steps do not have particular problems with holes, they may inter-
rupt an integer iso-line in the parametrization, potentially leading
to missing elements in the output. This event becomes more likely
as the size of a hole increases relative to the target edge length. I.e.
our method does not go so far as to perform implicit hole filling.

While our approach suppresses small handles,
small tunnels (which are less likely to appear as
an unintended artifact) persist. This is owed to the
fact that under normal smoothing the normals of a
small handle locally converge towards a flat con-
figuration whereas the normals of a small tunnel
do not. This is demonstrated on the right where
a small tunnel connecting the two sides of a disk
gets reproduced (i.e. the input and the output mesh
both have genus 1) even though the target edge length exceeds the
diameter of the tunnel by several orders of magnitude.

An assumption of our method is that wanted handles and unwanted
handles in the input mesh are well separated in terms of scale. This
is because handles with a circumference close to the target edge
length may lead to iso-lines which are parallel in
the parameter domain tunneling one another on the
surface as illustrated on the right. In such a case
the extracted mesh may locally be non-manifold.
The BUDDHA depicted in Figure 11 is a particularly interesting
mesh in this regard since its 100 handles come in almost every size
from “microscopic” to “huge”. As a result, some tuning of the tar-
get edge length was necessary to yield a manifold result.

Our approach disregards small scale features and artifacts by at-
tenuating high-frequencies in the normal field. Note that there is,
however, not a direct correspondence between high-frequencies and
small scale details: also sharp creases and corners carry high fre-
quencies in the normal field – which are attenuated even if these
features are isolated enough to be properly reproduced. While dis-
tinct maxima remain at such features (cf. Figure 7) – inducing the
desired singularities – they are less pronounced after the filtering.
But as we only perform the filtering in the normal field and preserve
the input geometry, these features can still be reproduced geomet-
rically correct. Also singularities often still arise on sharp corners
instead of somewhere in their vicinity, but there is no general guar-
antee. For further improvement in this regard it would be desirable
to be able to better distinguish between features that are just too
small to be reproducible and those that can be captured by the final
quad mesh. The use of another, e.g. bilateral or Perona-Malik type
of filter could be a first step in this direction. A true distinction is,
however, hardly possible already in the guiding field construction
stage – it depends too much on the global structure and alignment
of the parametrization – so that it seems unlikely that significant
improvements in this regard are possible within the common three-
stage strategy for field guided parametrization quad remeshing.

Finally, it is worth noting that our approach is not restricted to
parametrization based quad meshing methods alone. It promises
improved results in any method relying on guiding fields such as
the quad domain construction method in [Tarini et al. 2011], the
quad layout approach in [Campen et al. 2012; Campen and Kobbelt
2014a] or various non-photo realistic rendering techniques [Hertz-
mann and Zorin 2000; Umenhoffer et al. 2011]. Also, the extension
to anisotropic and non-orthogonal cross fields [Panozzo et al. 2014]
should be possible.

9 Conclusion

We presented a method to generate cross fields and in a subsequent
step integer grid parametrizations which are unaffected by small
scale features and artifacts such as noise, or small handles in the
input mesh. The key idea was to express and measure all involved
quantities based on a filtered normal field. This resulted in robust-
ness to ill-behaved input, thus eliminating the need for expensive
pre-processing. We showed how quad meshing in particular can
benefit from our method and there are further applications relying
on guiding fields which may very well draw profit from it, too.
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Figure 11: The input BUDDHA mesh has genus 100, the quad mesh obtained with our method has genus 9. All other approaches tested for
this paper yield too many singularities to compute a proper parametrization. The DRAGON is meshed at three different target edge lengths
and corresponding σ. As the target edge length increases, fewer small features are reproduced. The LION mesh yields a cross field with 1113
singularities when applying [Bommes et al. 2009]. Using our approach we reduce this to 60 singularities and can extract a quad mesh that is
not distorted by the bumpy back. The largest bounding box edge lengths and the target edge lengths s used are as indicated. All results were
computed using σ = s/2 in accordance with Section 3.
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Figure 12: (a) For a mesh with a small handle and a spike (the
same as depicted in Figure 4) a cross field and a parametriza-
tion are computed using the method from [Bommes et al. 2009],
(b) without additional processing (c) after smoothing the mesh, (d)
in conjunction with the method from [Ray et al. 2009] and (e) in
conjunction with our approach. Using smoothing, a few pairs of
singularities cancel out one another, using [Ray et al. 2009], even
more pairs of singularities are cancelled out and the remaining sin-
gularities are dispersed. Only when using our approach the mesh
is parametrized as if the handle was not existent, allowing the ex-
traction of a coarse quad mesh (f).
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