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QEx: Robust Quad Mesh Extraction
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Figure 1: Parametrization based quad meshing methods cannot guarantee integer-grid maps without fold-overs and degeneracies. The bunny
on the left is textured using an integer-grid map generated by the Mixed Integer Quadgrangulation method without stiffening. It contains a
number of fold-overs some of which are magnified on the right. The quad mesh generated using QEx, our fold-over tolerant quad extractor is
displayed in the center.—Previously, degenerate integer-grid maps such as this one were considered useless and state of the art quad meshing
methods spend a considerable amount of run time to fix them.

Abstract

The most popular and actively researched class of quad remeshing
techniques is the family of parametrization based quad meshing
methods. They all strive to generate an integer-grid map, i.e. a pa-
rametrization of the input surface into R2 such that the canonical
grid of integer iso-lines forms a quad mesh when mapped back onto
the surface in R3. An essential, albeit broadly neglected aspect
of these methods is the quad extraction step, i.e. the materializa-
tion of an actual quad mesh from the mere “quad texture”. Quad
(mesh) extraction is often believed to be a trivial matter but quite
the opposite is true: numerous special cases, ambiguities induced
by numerical inaccuracies and limited solver precision, as well as
imperfections in the maps produced by most methods (unless costly
countermeasures are taken) pose significant challenges to the quad
extractor. We present a method to sanitize a provided parametri-
zation such that it becomes numerically consistent even in a limited
precision floating point representation. Based on this we are able to
provide a comprehensive and sound description of how to perform
quad extraction robustly and without the need for any complex tol-
erance thresholds or disambiguation rules. On top of that we de-
velop a novel strategy to cope with common local fold-overs in the
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parametrization. This allows our method, dubbed QEx, to generate
all-quadrilateral meshes where otherwise holes, non-quad polygons
or no output at all would have been produced. We thus enable the
practical use of an entire class of maps that was previously consid-
ered defective. Since state of the art quad meshing methods spend a
significant share of their run time solely to prevent local fold-overs,
using our method it is now possible to obtain quad meshes signif-
icantly quicker than before. We also provide libQEx, an open
source C++ reference implementation of our method and thus sig-
nificantly lower the bar to enter the field of quad meshing.
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1 Introduction

All algorithms in the very popular and actively researched class of
parametrization based quad meshing approaches share one com-
mon trait: they strive to generate an integer-grid map [Bommes
et al. 2013a] which refers to parametrizations which map the in-
put mesh into R2 in such a way that the canonical grid of integer
iso-lines forms a quad mesh when mapped back onto the surface in
R3. While these parametrizations implicitly define a quad mesh,
it is necessary to materialize an explicit polygonal quad mesh for
virtually all applications. We call this process quad extraction.

Judging from the lack of attention the descriptions of all state of the
art parametrization based quad meshing methods pay to the quad
extraction post-process, one is led to conclude that quad extraction
is a trivial matter. However, typical integer-grid parametrizations
exhibit a plethora of pitfalls that cause naı̈ve quad extractors to fail.
Transition functions pedantically have to be kept track of and nu-
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merous special cases such as integer iso-lines coincident with input
mesh edges or integer vertices coinciding with input mesh vertices
have to be dealt with.

An even more severe source of complexity are numerical inaccura-
cies. These have two causes: (1) the parametrizations are typically
generated by a numerical optimization process which only satisfies
the constraints required by an integer-grid map up to a certain error
threshold and (2) the floating point representation of the parametr-
ization introduces errors on top of that. As a consequence, integer
iso-lines and especially intersections of them may fall into the “nu-
merical crack” between two adjacent triangles or into both of them
at once. Quad extractors have to detect such ambiguous cases and
resolve them in a consistent manner. This increases code and run
time complexity and is error prone.

In the end, even correctly implemented quad extractors fail in the
presence of small degeneracies in the given parametrization: de-
pending on the input mesh and other parameters such as the desired
target edge length, some triangles may get mapped to triangles with
a negative area in the parametrization domain (when the Jacobian
has a negative determinant). Such triangles are commonly referred
to as flipped or inverted. Since a flipped triangle, if adjacent to a
regular one, folds over an unflipped area in the parametrization do-
main, we call such a configuration a fold-over. State of the art quad
meshing methods spend a significant amount of run time on pre-
venting fold-overs since quad extractors produce holes or non-quad
faces when encountering them.

1.1 Related Work

Our quad extraction method is targeted at all parametrization based
quad meshing methods. These methods can roughly be divided
into those that employ some form of harmonic parametrization and
those that generate parametrizations which minimize some align-
ment energy. Instances of the first class are [Dong et al. 2006],
[Tong et al. 2006], [Huang et al. 2008], and [Zhang et al. 2010]. All
of these papers show quad meshes while none of them goes into any
detail regarding quad extraction, let alone mentions any problems
caused by fold-overs or numerical inaccuracies.

Methods that generate parametrizations based on more complex en-
ergies, e.g. to achieve curvature and/or feature alignment, include
[Ray et al. 2006], [Kälberer et al. 2007], [Bommes et al. 2009],
[Myles et al. 2010], and [Myles and Zorin 2013]. None of these
methods can guarantee fold-over freeness. In the Mixed-Integer
Quadrangulation (MIQ) approach [Bommes et al. 2009] this prob-
lem was acknowledged and the stiffening method was introduced
which iteratively updates the energy functional in order to heavier
penalize local distortions. This may eventually lead to fold-over
free parametrizations although there is no guarantee, especially for
large target edge lengths. In difficult configurations the parameters
have to be tuned in a trial-and-error manner before a non-degenerate
integer-grid map is generated. Moreover, stiffening is expensive as
was also observed in [Li et al. 2011] and [Li et al. 2012] where, as
a remedy, a restricted class of fold-overs is tackled heuristically.

The recently introduced “Reliable MIQ” approach [Bommes et al.
2013a] seems to be the first method to effectively prevent fold-overs
in aligned parametrizations by introducing a set of conservatively
chosen linear anti-flip constraints at the cost of a slower run time as
compared to the original MIQ approach.

Again, all of these works either omit the quad extraction process
entirely or only mention it as a side note. No concern for numerical
inaccuracies in the parametrization is raised.

Descriptions of quad edge tracing occur in [Alliez et al. 2003],
[Marinov and Kobbelt 2004] and especially [Dong et al. 2005].

However, as none of these methods deal with parametrization based
quad meshing, none of them have to deal with transition functions
(or fold-overs) and thus with none of the difficulties they incur.

There exists a wealth of general techniques for robust geometric
computations [Yap 1988; Edelsbrunner and Mücke 1990; Priest
1991; Fortune 1995; Hoffmann 2001]. However, since in our case
the input is inconsistent to begin with and numerical problems do
not solely occur in subsequent computations, these techniques do
not resolve our issues. Nevertheless, we build upon the exact predi-
cates in [Shewchuk 1996] after we numerically sanitized our input.

1.2 Contribution

Our contribution is threefold.
1. We introduce a method to numerically sanitize inaccurate in-

teger-grid maps. Coordinate precision is locally truncated and
transition functions are purified so that all subsequent geomet-
ric queries can be made consistently using exact predicates.
Thus, all decisions can be made based on local information
without the need to traverse entire neighborhoods of the mesh,
leading to faster and less error prone quad mesh extraction.

2. We comprehensively describe a quad extraction method,
pointing out all the pitfalls quad extraction involves and ex-
plaining in detail how to deal with transition functions and
special cases that arise during iso-line tracing. Our method
guarantees the extraction of valid quad meshes for fold-over
free integer-grid maps. In addition we introduce a method to
deal with common local fold-overs in the parametrization that
violate the integer-grid constraints and which not rarely occur
in the results of all state of the art parametrization methods
unless expensive countermeasures are taken.

3. We provide libQEx, an open source C++ reference imple-
mentation of our method and thus significantly lower the bar
for implementing quad meshing algorithms.

2 Method Overview

Our quad extraction method, dubbed QEx, roughly consists of
three phases: (1) input preprocessing, (2) geometry extraction, and
(3) connectivity extraction. Sections 3, 4 and 5 are devoted to these
phases, respectively. Before we go into detail though, we establish
the input requirements and introduce some terminology.

2.1 Input Requirements

QEx takes as input a triangle meshM = (V,E, T ) and a relaxed
integer-grid map f mapping each triangle in M to R2. Follow-
ing [Bommes et al. 2013a] an integer-grid map f is the union of lin-
ear maps fi : R3 → R2 that map each triangle (pi,qi, ri) ∈ R3×3

ofM to a triangle (ui,vi,wi) ∈ R2×3 in the plane. Moreover, it
satisfies three constraints:

• The transition functions gij mapping the chart of triangle i to
the chart of the adjacent triangle j have to be grid automor-
phisms [Kälberer et al. 2007], i.e. be of the form

gij(a) = R
rij
90 a + tij (1)

where R90 is a rotation by π/2, rij ∈ Z, and tij ∈ Z2 is an
integer translation.

• Singular points have to be mapped to integer coordinates, i.e.
f(si) ∈ Z2 ∀si ∈ S (2)

where S is the set of singular points inM.

• The image of each triangle has to have a positive area:
det(vi − ui wi − ui) > 0. (3)
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We define relaxed integer-grid maps to be parametrizations that
only satisfy Constraints 1 and 2 approximately (due to numerical in-
accuracies induced by the solver which generated the map as well as
due to the floating point representation) and disregard Constraint 3
entirely. This means that in contrast to pure integer-grid maps, our
relaxed integer-grid maps allow flipped triangles as well as triangles
degenerated to a line or a point.

2.2 Terminology

We already established thatM = (V,E, T ) represents the vertices,
edges and triangles of our input mesh and f somewhat informally
represents a collection of maps fi. The bold letters p, q and r refer
to vertices of the input or output mesh (or, depending on context,
their embedding inR3) whereas u, v and w refer to vertices in the
parametrized mesh f(M) (or their embedding inR2).

Since every triangle ti is mapped to its own chart using its own map
fi, vertices p ∈ V can have multiple images. To express this we
introduce the set of triangle corners C ⊆ V × T with

C = {(p, t) |p incident to t}.
To enumerate all corners of a vertex p ∈ V we introduce

∠ : V → P(C), p 7→ ({p} × T ) ∩ C
that maps p to all of its corners, as well as

∠t : V → C, p 7→ (p, t)

that maps p to its corner in t.

By f(c) with c = (p, ti) we refer to the image u = fi(p) of p in
the chart of triangle ti. By f(ti) we refer to the image of ti. If all
images of p ∈M coincide we refer to them by f(p).

We will also have to distinguish between the vertices of the input
mesh and those of the output (quad-)mesh. To that end we introduce
the names q-vertices, q-edges and q-faces that refer to the entities
of the output mesh. In addition to q-edges we also make use of the
concept of q-ports. A q-port represents an unconnected outgoing
q-edge of a q-vertex. Two connected q-ports represent a q-edge.

3 Input Preprocessing

The input preprocessing phase consists of two steps: We (1) extract
the transition functions between the charts of every pair of adjacent
input triangles and (2) sanitize the parametrization. Before we ex-
tract the transition functions we have to make sure that no edges get
mapped to a single point in the parameter domain. We do this by
initially collapsing all edges that are degenerated in the parameter
domain. As vertices get merged in this process, we store the origi-
nal vertex positions in R3 in the triangle corners so as to retain the
original surface geometry information.

3.1 Extracting the Transition Functions

ui vi

wi

vj

wj
uj

gij

In general, the parametrized input mesh consists
of multiple charts. When tracing an integer iso-
line across multiple charts we require a transition
function that translates coordinates between them.
In some settings the rotational part of these tran-
sition functions is available (e.g. as period jumps
in field guided parametrizations) in which case we
can take it as input. However, in order to ensure wide applicability
of our method we show how to extract both, the rotational and the
translational component solely from the input parametrization.

Assume (ui,vi,wi), (uj ,vj ,wj) ∈ R2×3 are the images of two
adjacent triangles inM with gij(vi) = wj and gij(wi) = vj (as
illustrated in the inset above). To compute the unknown transition

1: Input: triangle mesh (V,E, T ), map f

2: for each vertex p ∈ V do
3: let {c0, . . . , cn−1} = ∠(p) with ci = (p, ti)

4: let (ui, vi)
t = ui = f(ci)

5: let gi(u) = R
ri
90u + ti be the transition from ti to ti+1

6: maxCoord← max {‖u0‖∞, . . . , ‖un−1‖∞}
7: δ ← 2dlog2(maxCoord)e

8: s← (sgn(u0), sgn(v0))t

9: if p is regular then
10: u0 ← (u0 + δs)− δs . truncate precision of u0

11: else
12: FIXSINGULARPOINT(u0, gn−1 ◦ . . . ◦ g0)

13: for i = 1, . . . , n− 1 do . propagate u0 along the fan
14: ui ← gi−1(ui−1)

Algorithm 1: Parametrization Sanitization

function gij(x) = R
rij
90 x + tij we take advantage of the complex

number representation of the involved vertices. Let c : R2 →
C, (x1, x2)t 7→ x1 + ix2. Then due to the fact that by construction
‖wi − vi‖ = ‖vj −wj‖ 6= 0,

rij = =
(

ln

(
c(vj)− c(wj)

c(wi)− c(vi)

))
/
π

2

is the rotational part in multiples of π/2 with rij ∈ [0, 4) and
tij = wj − irijvi

is the translational part of the transition function.

Note that the input parametrization is typically the result of an op-
timization process performed by means of a numerical solver that
only satisfies the constraints on the transition functions up to a small
error. In addition, the parametrization is represented with limited
precision floating point numbers. As a consequence, rij and tij
generally are not elements of Z and Z2, respectively. In order to
obtain transition functions that exactly adhere to Constraint 1 we
round first rij and then tij to the nearest integers. Any subsequent
references to gij refer to this rounded version. Note that from gij

we can easily compute its inverse gji:

gji(a) = g−1
ij (a) = R

4−rij
90 (a− tij).

In practice, non-identity transition functions are usually concen-
trated on a small subset of the edges of M (“cut graph”) which
we refer to as cut edges. For the sake of clarity we use this scenario
in all illustrations with only one cut edge per singularity.

3.2 Sanitizing the Parametrization

sanitized input

raw inputAnother problem incurred by the numerical inaccu-
racies mentioned above is that the parametrization
is discontinuous on a very small scale: there is
no guarantee that gij(ui) = uj holds for any
{ui,uj} ⊆ f(∠(p)) and in spite of gji ◦ gij being
the identity it is not even guaranteed numerically that
gji(gij(vi)) = vi. This turns into an actual prob-
lem when integer grid vertices fall through the “nu-
meric crack” between two adjacent triangles or into both of them
as illustrated on the right. The chances of this actually happening
are high since, for instance, at aligned sharp features, integer grid
vertices necessarily fall onto input triangle mesh edges.

To overcome this problem, we equalize the parametrization in pre-
cision such that the floating point arithmetics used in the transi-
tion functions become exact. It does not suffice to ensure that
gji(gij(vi)) = vi holds for every edge: if we accumulate the tran-
sition functions gn−1 ◦ . . .◦g0 = ḡ around a vertex p with corners
ci = (p, ti),ui = f(ci) we have to make sure that ḡ(u0) = u0.
Since the ti can be in different charts, the floating point represen-
tations of their coordinates may exhibit different exponents. This
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function FIXSINGULARPOINT(u, ḡ)
let ḡ(a) = Rr90a + t, t = (t1, t2)t

u←



round(u) if r = 0 mod 4
1
2

(
t1−t2
t2+t1

)
if r = 1 mod 4

1
2

(
t1
t2

)
if r = 2 mod 4

1
2

(
t1+t2
t2−t1

)
if r = 3 mod 4

Algorithm 2: Snapping Singularities to the Fixed Point of ḡ

implies that transforming ui into uj = gij(ui) we may lose some
of the least significant bits in the floating point representation of ui

and thus are not able to get back to u0 if we close the cycle.

We solve this problem in Algorithm 1 by determining the largest
exponent the coordinates of any image ui ∈ f(p) have and trun-
cate those least significant bits in the mantissa of u0 that cannot be
represented in the charts of every triangle incident to p. This op-
eration is performed in line 10. It presents an algebraic no-op but
implemented using limited precision floating point arithmetics has
the desired effect of truncating the number’s precision. Afterwards,
we propagate the coordinates of u0 along the 1-ring triangle fan.

If p is regular (not a singularity, line 9) the accumulated transition
function gn−1 ◦ . . . ◦g0 around the vertex is the identity and hence
its rotational component is zero (i.e. it has no angle defect). How-
ever, the inverse is not necessarily true as singularities with a va-
lence of a multiple of four have r = 0 as well. To detect these cases
we can either take valence information as input to our method or we
compute the valence of the singularity as described in Section 5.6.
Note that dealing with unsanitized coordinates at this point, we may
get a relatively imprecise valence but as we only have to distinguish
between valences 4 and ≥ 8 this is not a problem.

Once we know which vertices represent singularities, in order to
guarantee that the sanitized parametrization satisfies Constraint 2
we make sure that their parametrization has integer coordinates in
line 12, prior to propagation along the triangle fan. Note that around
a singularity, gn−1 ◦ . . . ◦ g0 is not the identity. To ensure that
gn−1(un−1) = u0 still holds, it does not generally suffice to sim-
ply round the coordinates to the nearest integer. Instead we have
to move u0 into the fixed point of the accumulated transition func-
tion. This is implemented in Algorithm 2. In most applications the
input parametrization usually satisfies Constraint 2 up to an error
of far less than 1/2 which means that in these cases simple round-
ing of the coordinates would indeed suffice. Using the method in
Algorithm 2 we are on the safe side for any input. Note that trunca-
tion (line 10) is not necessary in this case as the fixed point, being
integral, can be represented precisely (unless its parametrization co-
ordinates exceed the range of the mantissa of the floating point rep-
resentation which is ±252 for standard IEEE 754 double precision
floats—which is far from any practical relevance).

After this procedure, the parametrization and the transition func-
tions are numerically consistent and compatible. If feature align-
ment is desired we can take the list of feature edges as additional
input and snap these edges to their closest integer iso-line.

As a final step we again collapse all edges with zero length after
the precision truncation. Note that this only serves to avoid special
case handling later on and does not affect the parametrization.

We can now use exact predicates for any geometric query. In fact
we only need a single predicate, ORIENT2D(a,b, c) as introduced
in [Shewchuk 1996] which returns a scalar with the same sign as
det(b− a c− a). We also use variants of ORIENT2D, namely
sgn(area(t)) = ORIENT2D(pt,qt, rt)/|ORIENT2D(pt,qt, rt)|
as well as ISCW(p,q, r), ISCOLLINEAR(p,q, r), and

1: Input: triangle mesh (V,E, T ), sanitized map f

2: for each vertex p ∈ V do
3: pick arbitrary parameter image u ∈ f(∠(p))

4: if u ∈ Z2 then
5: generate vertex-q-vertex with embedding p

6: for each edge (p,q) ∈ E do
7: pick arbitrary parameter image (u,v) of (p,q)

8: for each 0 < α < 1, αu + (1− α)v ∈ Z2 do
9: generate edge-q-vertex with embedding αp + (1− α)q

10: for each triangle (p,q, r) ∈ T do
11: let (u,v,w) = f(p,q, r)

12: for each 0<α,β<1, αu+βv+(1−α−β)w ∈ Z2 do
13: generate face-q-vertex w/ emb. αp + βq + (1− α− β)r

Algorithm 3: Q-Vertex Generation

ISCCW(p,q, r) which are true if ORIENT2D(p,q, r) is
positive, zero or negative, respectively.

Without the guarantees the truncation provides we would have to
account for small errors. For instance, to decide which part of a
mesh some point lies on (see Section 4), we would have to intersect
an ε-ball around that point with an entire neighborhood of the mesh
and make consistent decisions in the presence of ambiguities. This
would complicate algorithms and impact their run time complexity.

4 Geometry Extraction

We now start by extracting the positions of our output q-vertices.
We also examine the local neighborhood of the q-vertices in order
to decide how many outgoing q-edges they will have in the output
quad mesh.

4.1 Generating Q-Vertices

Due to the sanitization we performed before, using exact pred-
icates we can locally decide which vertex, edge, or face of the
parametrized mesh any given grid point p ∈ Z2 intersects, in or-
der to extract all q-vertices. We distinguish between three different

vertex-q-vertex

face-q-vertex
edge-q-vertextypes of q-vertices: (1) vertex-q-vertices, (2) edge-

q-vertices and (3) face-q-vertices. Of the first type
are all q-vertices that coincide with a vertex of the
parametrized mesh. Q-vertices of the second type
are those that are not of the first type but still inter-
sect with an edge. Face-q-vertices are all remain-
ing q-vertices, i.e. those that merely intersect with a parametrized
face. Note that there is no 1:1 correspondence between integer grid
points and q-vertices since chart-based parametrizations may over-
lap so that multiple q-vertices correspond to the same integer loca-
tion inR2.

We extract the three types of q-vertices using the three simple
loops over the entities of our input mesh M = (V,E, T ) in Al-
gorithm 3. Note that at this point, in the presence of fold-overs,
some q-vertices may get extracted that vanish in the vertex merging
step (Section 5.4) later on.

4.2 Fold-Overs

A fold-over is a configuration where some triangles t ∈ T get
mapped to triangles f(t) with a negative area in the parametri-
zation domain. Integer-grid parametrizations are fold-over free due
to Constraint 3. However, since typical quad meshing approaches
generate the minimizer of an energy functional which, for perfor-
mance reasons, usually is not constrained by this (non-linear) in-
equality, we are often confronted with fold-overs in practice. Since
some of the following steps of our algorithm have to consider fold-
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f f −1

(a) (b) (c) (d) (e)

Figure 2: Meshes in parametrization domainR2 (top row) and sur-
face domain (bottom row). (a)–(d): examples of parametrizations
with fold-overs. (e): the same mesh as in (d) parametrized using
identical transition functions but without fold-overs.

(a) (b) (c) (d) (e) (f)

Figure 3: Top: different parametrizations around an integer grid
point. Outgoing integer iso-lines are illustrated as colored arrows.
Flipped triangles are highlighted. Bottom: back-projection of the
iso-lines onto the surface domain. Here, each arrow corresponds
to an extracted q-port.

overs and handle them appropriately, we introduce the effects they
can have in this section.

The simplest type of a fold-over is one which is locally restricted
to the interior of an integer grid cell. Since we never traverse such
triangles during integer iso-line tracing our method is oblivious to
this class of imperfections. Figure 2 illustrates some more intricate
fold-over configurations. Figure 2 (a) shows a fold-over which ex-
tends over part of an integer iso-line, not affecting a grid point. This
type of fold-over is handled during q-port tracing (Section 5.1).

Figure 2 (b) illustrates a fold-over which contains a grid point. Such
fold-overs lead to the same integer-grid point intersecting the pa-
rametrization multiple times, ultimately leading to non-quad faces
getting extracted. Multiple duplicated grid points can even lead to
ghost faces as Figure 2 (c) illustrates. The q-port enumeration (Sec-
tion 4.3), face extraction (Section 5.2), and vertex merging (Sec-
tion 5.4) all play a role in properly handling this type of fold-over.

Figure 2 (d) illustrates the most intricate type of fold-over which,
in a way, is a degeneration of the nonproblematic parametrization
illustrated in Figure 2 (e). Here a singular vertex of valence 5 loses
an entire 360° of its signed inner angle sum, resulting in a valence 1
vertex. This configuration leads to an 8-gon (with one edge oc-
curring twice in a row, see Figure 5). Such fold-overs are handled
during q-edge recovery (Section 5.5).

4.3 Enumerating Q-Ports

regular vertex:
4 ports
valence 3:
3 ports

5 ports
valence 5:

Once all q-vertices are generated, for each
q-vertex we generate all of its q-ports which
correspond to the intersections of the in-
teger iso-lines with an infinitesimal neigh-
borhood of the parametrized mesh around
the q-vertex. For a regular non-boundary
q-vertex there are always four q-ports (cf.
Figure 3 (a), (b)). As irregular vertices are

1: Input: triangle mesh, sanitized map f , q-vertices
2: for each vertex-q-vertex q do
3: let p be the input mesh vertex q coincides with
4: ports← [ ]

5: for each corner c = (p, t) ∈ ∠(p) in CCW order do
6: let (u,v,w) ∈ R2×3 be the parameter image of t
7: let u∗ = u be the parameter image of q in t
8: let d(r) := Rr90( 1

0 )

9: orientation← ORIENT2D(u,v,w)

10: if orientation = 0 then
11: continue
12: else if orientation> 0 then
13: r ← 0

14: while POINTSINTO(d(r),u,v,w) do
15: r ← r + 1 . Find iso-line outside of t to ensure correct order.
16: for i = 1, . . . , 3 do . Add ports in CW order.
17: if POINTSINTO(d(r − i),u,v,w) or
18: ISCOLLINEAR(v − u,d(r − i)) then
19: ports← ports ∪ [(q,u?, t,d(r − i))]
20: else . Inverse order for flipped faces.
21: r ← 0

22: while POINTSINTO(d(r),u,w,v) do
23: r ← r + 1

24: for i = 1, . . . , 3 do
25: if POINTSINTO(d(r + i),u,w,v) or
26: ISCOLLINEAR(v − u,d(r + i)) then
27: ports← ports ∪ [(q,u?, t,d(r + i))]

Algorithm 4: Q-Port Enumeration. Per q-port we store its q-
vertex, the direction it points into in the parameter domain, the
triangle it points into and its q-vertx’ parameter image in that tri-
angle’s chart.

parametrized with an angle defect, there are more or less than four
intersections of parameter lines with the mesh (cf. Figure 3 (d), (e)).

Care has to be taken to store the q-ports consistently in clockwise
order (w.r.t. the surface in R3) so that when extracting the q-faces
we are able to turn left at a q-vertex simply by moving to the next
q-port in the q-vertex’ list. Note that clockwise order on the sur-
face does not imply any particular order in the parametrization.
This is because non-identity transition functions between triangles
may introduce jumps in the q-ports’ directions and triangles that are
flipped in the parametrization invert the order of their q-ports when
mapped back to the surface (cf. Figure 3 (c), (f)).

The q-port extraction for vertex-q-vertices is outlined in Al-
gorithm 4. On meshes with boundaries, the if-conditions in
lines 17 and 25 have to be adjusted so that iso-lines collinear
with w − u are accepted if t has no counterclockwise neigh-
bor. The predicate POINTSINTO(d,u,v,w) checks whether
d points from u into triangle (u,v,w) and is equivalent to
ISCCW(u,v,u + d) ∧ ISCCW(u,u + d,w).

The q-port extraction methods for edge-q-vertices and face-q-
vertices are simplifications of this method: For edge-q-vertices the
loop in line 5 has to iterate only over the two incident faces and for
face-q-vertices simply one q-port for each of the Cartesian direc-
tions is generated and the list is reversed if the surrounding face is
flipped. In both cases, u? in line 7 is computed as a convex combi-
nation of u,v,w.

5 Connectivity Extraction

5.1 Tracing Q-Ports

Now that we enumerated all q-ports we trace the integer iso-lines
from each q-port looking for the opposite q-port. We connect each
q-port with its counterpart. Every opposing pair of connections cor-
responds to a q-edge.

5
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1: Input: triangle mesh, sanitized map f , q-vertices, q-ports
2: for each port p = (q,u, t,d) do
3: . q: start q-vertex, t: start triangle, d∈R2: tracing direction
4: if isConnected(p) then
5: continue
6: a← u . source UVs
7: b← a + d . target UVs
8: g ← Id . accumulated transition function
9: t′ ← t

10: e′ ← NIL

11: s← sgn(area(f(t)))

12: while not isInside(b, f(t′)) do
13: e← PICKNEXTEDGE(e′, t′, a,b)

14: let ge be the transition function from t′ over e
15: t′ ← opposite triangle of e
16: if t′ = NIL then . Trace into boundary?
17: abort trace, leave p dangling
18: e′ ← e

19: s′ ← sgn(area(f(t′)))

20: g ← ge ◦ g
21: if s′ 6= 0 and s′ 6= s then . Orientation change?
22: swap(a,b)
23: d← −d
24: s← s′

25: let p′ = (b, t′,−d)

26: store connection (p, p′, g) . create q-edge
27: store connection (p′, p, g−1)

Algorithm 5: Q-Port Tracing

Algorithm 5 implements the tracing. Using exact predicates on
the sanitized parametrization, we do not require any neighborhood
searches in order to accommodate for a numeric error.

PICKNEXTEDGE (line 13) returns the edge of t′ that is unequal to
e′ and intersects the line segment (a,b]. If both remaining edges
of t′ intersect that line segment, it returns the one which is incident
to fewer vertices which fall onto the line segment. (In case of a tie
it is irrelevant which one is returned.) This way we effectively deal
with integer iso-lines intersecting input mesh edges and triangles
degenerated to a line. The required intersection tests are performed
using the exact predicate ORIENT2D.

Care has to be taken when tracing into boundaries and across ori-
entation flips. If we trace the iso-line across an edge with only
one incident face we reached a boundary and abort the trace, leav-
ing a dangling q-port (line 16). Dangling ports are ignored in the
face tracing phase. If the orientation of the parametrized mesh
flips across the trace path, i.e. if we cross from t1 to t2 and
sgn(area(f(t1))) 6= sgn(area(f(t2))), we have to invert our trac-
ing direction (line 21).

To enable compact notation, for a connection c = (p, p′,g) we
define FROMPORT(c) := p, TOPORT(c) := p′ and for a q-port
p = (q,u, t,d) we define VERTEX(p) := q. We also define the
shorthands FROMVERTEX(c) := VERTEX(FROMPORT(c)) as well
as TOVERTEX(c) := VERTEX(TOPORT(c)).

5.2 Extracting Q-Faces

Now that we have connectivity information between q-vertices we
can extract the actual q-faces. We do this by cycling around each
q-face along its edges in counterclockwise order. Consequently, we
traverse each q-edge twice, once in each direction, to capture both
incident q-faces. This is why in the previous step we created two
connections (or half-edges) between each adjacent pair of q-ports.

The basic idea – which is implemented in Algorithm 6 – is sim-
ple: Starting at any unvisited connection, we follow the connection
to the next q-vertex, turn left and repeat until we get back to the
starting q-vertex. Since for every q-vertex we maintain a clockwise

1: Input: q-vertices, q-ports, q-edges
2: for each connection cstart do
3: if cstart is visited then
4: continue
5: qstart ← FROMVERTEX(cstart)

6: V ← [ ], U ← [ ] . List of vertices and local UVs
7: ḡ ← Id . Accumulated transition function
8: c← cstart

9: repeat
10: let c = (p, q, g)

11: let FROMPORT(c) = (q,u, t,d)

12: mark c as visited
13: V ← V + [q]

14: U ← U + [ḡ−1(u)]

15: qnext ← TOVERTEX(c)

16: pnext ← NEXTPORT(qnext, TOPORT(c))

17: ḡ ← FANTRANSITIONCW(TOPORT(c), pnext) ◦ g ◦ ḡ
18: if pnext is dangling port then
19: abort, continue with next iteration of outer loop
20: else
21: c← OUTGOINGCONNECTIONFROM(pnext)

22: until FROMVERTEX(c) = qstart

23: store face with vertices V and local UVs U

Algorithm 6: Face Extraction

ordered list of q-ports we turn left simply by picking the next q-
port in the list after the q-port we used to get to the q-vertex. This
is what NEXTPORT (line 16) does.

Algorithm 6 additionally computes parameter coordinates for every
q-vertex, all expressed in the chart of the initial q-port’s triangle.
We call these coordinates local UVs as they represent a parametri-
zation of each q-face in its own local coordinate system. To com-
pute the local UVs, the transition functions along the traced face
boundary are accumulated (line 17). FANTRANSITIONCW(p1, p2)
with p1, p2 belonging to the same q-vertex, accumulates the transi-
tion functions on the triangle fan when moving from p1’s triangle to
p2’s triangle in clockwise order.

The generated q-faces form the mesh as induced by the input para-
metrization. In the presence of fold-overs, it may potentially con-
tain non-quad faces. In the following sections we will see that these
can be turned into quad faces without affecting the surrounding
quads by examining the local UVs.

5.3 Local Face-UVs

To understand what types of q-faces Algorithm 6 constructs, we
examine the computed local UVs. We can always translate the ref-
erence coordinate system of the q-face so that the first q-vertex has
local UVs u0 = (0, 0)t and rotate it so that the first connection’s
outgoing q-port points into direction d0 = (1, 0)t. In line 15 the
face extraction follows the current connection to the next vertex.

f f −1

(a) (b) (c) (d)

Figure 4: Examples of different face UVs for different types of fold-
overs. The upper row shows parametrizations of the meshes in the
lower row. The integer iso-grid of the upper row is projected back
into the meshes in the lower row. Fold-overs are highlighted in red.
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1: Input: extracted mesh (V,E, F )

2: initialize merge-graphG = (VG, EG), VG ← V, EG ← ∅
3: for each q-face f do
4: for each pair of q-vertices p1,p2 ∈ f do
5: if p1 and p2 have identical local UVs in f then
6: EG ← EG ∪ {(p1,p2)}
7: for each connected component C = (VC , EC) ⊆ G do
8: create Vertex p∗, use c.o.g. of C as embedding
9: V ← V ∪ {p∗}

10: for each (p,pC) ∈ E,p ∈ V \ VC ,pC ∈ VC do
11: if (p,p∗) /∈ E then
12: E ← E ∪ {(p,p∗)}
13: E ← E \ (VC × V ) . delete merged edges
14: V ← V \ VC . delete merged vertices

15: SIMPLIFYFACES(V, E, F)

Algorithm 7: Vertex Merging

Each connection was generated by tracing the integer iso-line at u0

in direction d0 across the input mesh, following all transition func-
tions along the way until it reaches the next integer coordinates.
Every time there is an orientation change along the way (i.e. every
time we cross from a regular triangle into an inverted one and vice-
versa) the tracing direction is inverted. As a consequence, when we
arrive at the next q-vertex we either do so on a regular triangle after
an even number of orientation changes walking into direction d0 or
on an inverted triangle after an odd number of orientation changes
walking in direction −d0. In the former case the local UVs of the
next q-vertex are u1 = u0 + d0, in the latter case we ran back to
the same local UVs u1 = u0. Figures 4 (a), (b) illustrate tracing
with an even number of orientation changes along the connections.
In Figure 4 (c) we can see two connections with an odd number of
orientation changes that lead to a face where the local UVs of the
blue vertex occur three times.

Key to understanding how the tracing continues is the function
NEXTPORT (line 16) that selects the next q-port and hence the next
connection that the extraction will continue on. Let pin be the port
pointing in direction −din through which we entered the current
q-vertex and pout = NEXTPORT(pin) the port pointing in direction
dout through which we will leave the current q-vertex. NEXTPORT
simply picks the next q-port in the q-vertex’s q-port list. Due to
the way this list was constructed in Algorithm 4 we know that
dout, expressed in the coordinate system of pin, is equal to either
(1) R−1

90 (−din), (2) R90(−din) or (3) −din. All three cases occur
in Figure 3. Case (1) is the regular case that occurs if both, the tri-
angle of pin and the triangle of pout are not inverted. Case (2) occurs
if both triangles are inverted. Case (3) occurs if one triangle is in-
verted and the other one is not. On face-q-vertices, only Cases (1)
and (2) can ever occur. These findings hold for q-vertices on a
boundary as well as we keep dangling q-ports that point across the
boundary (and discard the face intersecting the boundary). There is
one intricate special case in which the prerequisites for these find-
ings are not given. We go into detail on that in Section 5.5.

Consequently, no matter for how many iterations the inner loop
in Algorithm 6 runs, we always trace the sequence of local UVs
(0, 0)t, (1, 0)t, (1, 1)t, (0, 1)t: as long as we trace in counterclock-
wise order in this unit quad we automatically take left turns at the
q-vertices. The tracing direction gets inverted whenever we enter
fold-overs either along a connection or on a q-vertex. As long as
we trace in inverted regions, i.e. clockwise, we automatically take
right turns at the q-vertices.

5.4 Vertex Merging

The rationale behind the vertex merging is the observation that dur-
ing tracing due to orientation changes we visit the same local UVs

multiple times, creating clones of what would be only one q-vertex
if we would “iron out” the fold-overs that cause them. Algorithm 7
identifies q-vertices that share the same local UVs and merges them
into a single vertex. Since all vertices within the same q-face share
at most four unique local UVs, after the merging algorithm the
only possible q-face types are quads, 2-gons and 1-gons. The latter
two are collapsed trivially which is what SIMPLIFYFACES (line 15)
does. 3-gons cannot occur: For a triangle we would need a diagonal
connection in the UV unit-quad. However, during vertex merging
no new connections are created and during face extractions only
horizontal, vertical and cyclic connections are generated.

5.5 Recovering Lost Q-Edges

In Section 5.2 we explained why tracing any face in our extracted
mesh we can only visit a limited set of parameter coordinates in the
local coordinate system of the face. Our argument was based on the
assumption that two subsequent q-ports at a q-vertex only point into
the same direction if one of them lies in a flipped triangle. However,
this assumption fails in one special case: around a vertex-q-vertex
we can arrange the fold-overs in such a way that the entire triangle
fan spans an absolute range of less than 180°. An instance of this is
illustrated in Figure 2 (d).

(a) (b) (c)

Figure 5: A q-vertex with only one extracted q-port. (a) The unpro-
cessed configuration, (b) during preprocessing a q-edge is inserted
resulting in two quads after merging, (c) a synthetic failure case for
our strategy. Cut edges are highlighted in cyan and magenta.

In this case the only extracted q-port of the q-vertex lies next to
itself so that two subsequent ports point into the same direction even
though the orientation of their triangles does not differ. This results
in a face which covers more than one unit quad in the parameter
domain and does not permit the extraction of consistent local UVs
since it includes a singularity. Figure 5 (a) illustrates such a face.

If we apply Algorithm 7 with inconsistent local UVs, a non-mani-
fold, non-quad configuration is the result. The problem is that two
instances of what would be the same q-vertex, if the fold-over was
ironed out, exist but without an integer iso-line between them they
cannot be merged so that two should-be separate faces become one.

An approach towards a general solution to this problem could in-
volve a global search for instances of the same q-vertex. However,
the only instances of this problem we ever encountered in practice
were such constellations where all copies of the same q-vertex are
in the same extracted q-face. Thus, our pragmatic approach to this
problem is a preprocessing step performed before Algorithm 7: For
each q-vertex with missing ports we traverse all of its incident q-
faces, looking for q-vertices that share its local UVs. We then cre-
ate a pair of new ports for each q-vertex we find and connect them.
This way the faces are successfully separated and the precondition
for Algorithm 7 is established as Figure 5 (b) illustrates.

Q-vertices with missing ports are determined by comparing their
valence as induced by the parametrization to the actual number of
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Figure 6: The back of the BUNNY’s head exhibits two singularities
with missing parameter lines next to each other. Both singularities
should have valence 5 but are only intersected by one parameter
line. At these locations two 8-gons (with one edge occurring twice
in a row) are extracted. Then one of the missing q-edges is re-
stored. After the vertex merging algorithm, the extracted mesh is
all-quadrilateral and the two valence 5 singularities are merged to
one vertex of valence 6.

1: Input: triangle mesh (V,E, T ), sanitized map f

2: for each vertex p ∈ T do
3: let {c0, . . . , cn−1} = ∠(p), ci = {p, ti}
4: let φi be the signed inner angle of f(ti) at c
5: Φ← 0

6: split sequence {ci} into subsequences with uniform sgn(φi)

7: for each subsequence {cj , . . . , ck} do
8: φ←

∑
i=j,...,k φi

9: if sgn(φ) < 0 then
10: Φ← Φ + 2π + φ

11: else
12: Φ← Φ + φ

13: valp ← ROUND(2Φ/π)

Algorithm 8: Valence Counting

extracted ports. Section 5.6 explains how we determine a q-vertex’
valence from the parametrization. Figure 6 illustrates the three steps
involved in extracting such a configuration.

Figure 5 (c) illustrates a contrived example in which the described
strategy fails: multiple ports are missing on singularities adjacent to
one another due to an intricate fold-over configuration. However,
even by prescribing extremely large target edge lengths (cf. Fig-
ure 8) we were unable to produce a failure case in our experiments.

5.6 Valence Counting

valence 4 valence 3

valence 5 w/ foldover
valence 5

φ−2π
φ

In order to determine whether fold-overs
caused the q-port extraction step to miss
certain parameter lines we need to know
the valence a q-vertex is supposed to have
and then compare it to the number of q-
ports that were actually extracted. A naı̈ve
approach to obtaining this information is
to accumulate the inner angles of all inci-
dent triangles in the parameter domain. Fig-
ure 2 (d), however, demonstrates why in the
presence of fold-overs this approach fails: We would count an in-
ner angle of π/2 instead of 5π/2. This is because a local fold-over
turns a run of triangles with an integrated inner angle of φ into
flipped triangles with an integrated signed inner angle of φ − 2π.
Thus, for correct valence counting Algorithm 8 divides the triangle
fan into runs of triangles with equal orientation and sums up the
corrected inner angles.

Note that in the presence of almost degenerate triangles numerical
inaccuracies can lead to large errors in the inner angles φi if regular
floating point arithmetic is used to compute them. Thus, if valence
information is available from a processing step performed prior to
quad extraction, as is the case in all cross-field based parametri-
zation methods such as QuadCover [Kälberer et al. 2007] or MIQ
[Bommes et al. 2009], it is generally preferable to use that informa-
tion instead of recomputing the valence from the parametrization.

Figure 7: The ARMADILLO parametrized using MIQ without stiff-
ening in 7.4s. Contains 78 flipped faces and two with zero area.

6 Results

To demonstrate the effectiveness of our approach we used para-
metrizations obtained using the QuadCover method [Kälberer et al.
2007] and the MIQ method [Bommes et al. 2009] (without stiffen-
ing). We have put no effort into tuning parameters or making man-
ual adjustments so as to demonstrate QEx’ robustness against im-
perfect parametrizations. Both methods generate parametrizations
in a relatively fast manner but tend to produce more and more fold-
overs with increasing target edge length. Figures 7–11 show how
in a great variety of settings our approach extracts consistent quad
meshes out of fold-over ridden parametrizations.

In Algorithm 7 we positioned the merged vertices in the center of
gravity. A better choice is to use [Zhang et al. 2005] to embed these
vertices which is what we did in Figure 1, 7 and with the BOTIJO
in Figure 9.

We also produced MIQ parametrizations and applied stiffening iter-
ations until all fold-overs were eliminated (if possible). Stiffening
incurs a run time impact and as target edge lengths grow it cannot
effectively guarantee fold-over-freeness. Table 1 shows some tim-
ings. A “fail” in the stiffening row represents a failure to generate
a fold-over free parametrization after allotting 100 times the run
time the pure MIQ approach took. Figure 10 shows the differences
between a stiffened mesh and one extracted from an unstiffened pa-
rametrization. The run time of our algorithm was between 30ms
and 160ms for all examples depicted here except Figure 11.

We also performed experiments with the Reliable MIQ method
[Bommes et al. 2013a] (see Figure 10). RMIQ effectively prevents
fold-overs but does so at a significant
run time impact as compared to pure
MIQ.

To mitigate the suboptimal element
quality that usually arises in the vicin-
ity of fold-overs, tangential smooth-
ing [Zhang et al. 2005] can also be
applied globally. See the example on
the right where we post-processed the
BUNNY quad mesh from Figure 1.

7 Limitations and Future Work

As explained in Section 5.5 QEx is not robust against all conceiv-
able types of fold-overs. We managed to hand-craft synthetic fold-
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Figure 8: The DUCK. Largest bounding box edge is 84. Back: parametrizations as generated by MIQ without stiffening (first four) and
QuadCover (rightmost) using a given cross field and target edge lengths 4, 8, 16, 28 and 8. The MIQ parametrizations took 1.2 seconds
each, the QuadCover parametrization took 750ms. Front: extracted quad meshes. Note that even the coarsest quad mesh still consists of
one single, manifold, watertight component. While meshes that coarse obviously do not properly approximate the surface geometry, they may
well be of interest as layouts or base meshes in various applications [Campen et al. 2012; Bommes et al. 2013b].

Figure 9: Left: The BOTIJO, parametrized using MIQ without stiff-
ening with target edge length 10 (in 3.9s, 47 flipped triangles). Cen-
ter: QuadCover (in 1.6s, 116 flipped triangles). Right: The FAN-
DISK parametrized using MIQ with feature alignment constraints
(in 0.6s, 9 flipped triangles).

overs that lead to non-quad meshes. It might be possible to provoke
such fold-overs in the real world using excessively large target edge
lengths, however we have yet to see such a case in practice. It might
be worth investigating if our method could be made provably ro-
bust against any type of fold-over maybe by employing some more
global strategy to resolve flipped configurations.

Note that our quad extraction method does not guarantee to pre-
serve singularities as given by the parametrization. That being said,
all singularities with sane neighborhoods in the parameter domain
are preserved. However, if fold-overs span across multiple singu-
larities, they may get merged. Looking at the rightmost meshes in
Figure 8 or even at the back of the BUNNY’s head in Figure 6 it
becomes apparent that actually preserving the singularities would
require global changes to the given quad layout and might not be
the desired result.

Other methods which require tracing of lines in a parametrization
might benefit from adaptations of our approach: to HexCover
[Nieser et al. 2012] our method should be applicable with little
modifications. Extending the q-ports representation and vertex
merging method, it should even be adaptable to hexahedral extrac-
tion for, e.g. the CubeCover approach [Nieser et al. 2011].

8 Conclusion

We presented QEx, a method to robustly extract consistent quad
meshes even out of imperfect integer-grid maps as they arise from
state of the art parametrization based quad meshing methods. Our
method not only handles numerical inaccuracies in the parametri-
zation by locally truncating parameter precision but is also robust
against local fold-overs. This robustness can be leveraged to gen-

Mesh DUCK ROCKERARM BOTIJO
Edge Length 4 8 .03 .1 3 10

QuadCover .75s .75s 3.0s 3.0s 1.6s 1.6s
MIQ 1.2s 1.2s 4.7s 4.2s 3.9s 3.9s

w/ stiffening 5.9s fail 135s fail 10.1s fail

Table 1: Run time comparison of several approaches. Without
QEx, stiffening is necessary to remove fold-overs. Using our quad
extraction method we can make use of parametrizations generated
in a fraction of the time using MIQ or QuadCover.

erate valid all-quadrilateral meshes using the quickest known quad
meshing methods, enabling, for instance, better interactivity when
manually designing and fine-tuning quadrangulations.

We provide libQEx, an open source reference implementation of
QEx available for download at:
http://www.rwth-graphics.de/software/libQEx.
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