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Figure 1: Visualization of a geodesic distance field with respect to an anisotropic metric (shown by tensor ellipses on the left;
field source on top). Next to a reference solution, we show the results and approximation errors of various adapted known
algorithms applied for the distance computation. Our novel Short-Term Vector Dijkstra on the far right shows the best results.

Abstract
The computation of intrinsic, geodesic distances and geodesic paths on surfaces is a fundamental low-level build-
ing block in countless Computer Graphics and Geometry Processing applications. This demand led to the devel-
opment of numerous algorithms – some for the exact, others for the approximative computation, some focussing
on speed, others providing strict guarantees. Most of these methods are designed for computing distances accord-
ing to the standard Riemannian metric induced by the surface’s embedding in Euclidean space. Generalization
to other, especially anisotropic, metrics – which more recently gained interest in several application areas – is
not rarely hampered by fundamental problems. We explore and discuss possibilities for the generalization and
extension of well-known methods to the anisotropic case, evaluate their relative performance in terms of accuracy
and speed, and propose a novel algorithm, the Short-Term Vector Dijkstra. This algorithm is strikingly simple to
implement and proves to provide practical accuracy at a higher speed than generalized previous methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—

1. Introduction

Measuring lengths or distances is one of the most fundamen-
tal operations in the analysis, processing, and synthesis of
geometry. While this task can be as simple as applying the
Pythagorean formula in free Euclidean space, it quickly gets
more complex as we move to a non-Euclidean, intrinsic set-
ting on manifolds, and even more if these measurements are
to be taken with respect to a non-standard metric.

We consider a 2-manifold M (possibly with boundary)
equipped with smoothly varying norms ‖ ·‖gx on the tangent

spaces TxM. As these norms allow us to infinitesimally mea-
sure distances on M, for a continuously differentiable curve
ζ : [0,1]→M we can define its total length through integra-
tion as `(ζ) =

R 1
0 ‖ζ
′(t)‖gζ(t) d t. With this we can define the

intrinsic metric g measuring geodesic distances between two
points p,q ∈M as the infimum over the lengths of all curves
ζ on M connecting p with q, i.e.

g(p,q) = inf
ζ

{`(ζ) : ζ(0) = p, ζ(1) = q},

and in this way obtain a so-called length metric space (M,g).
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Note that in the special but common case that ‖ · ‖gx is
induced by some inner product 〈· , ·〉x on TxM for each x ∈
M, i.e. ‖v‖gx =

√
〈v,v〉x, g is a Riemannian metric. If M is

further embedded in Euclidean space – as is the case in most
geometry processing scenarios – the Euclidean dot product
implies a natural inner product via its restriction to TxM. We
call the corresponding norm standard norm, denoted ‖ · ‖x,
and the induced Riemannian metric standard metric.

Relative to the standard metric and norm we characterize
a metric g and its underlying norm based on their quotient
r(v,x) = ‖v‖gx/‖v‖x (for v 6= 0) as follows:

• If r(v,x) ≡ r(x), i.e. it is independent of v, we call the
metric g isotropic as there is no directional dependency.
• If r(v,x)≡ r(x) 6≡ 1, we call the metric g weighted by the

weight field r(x).
• If r(v,x) 6≡ r(x), i.e. there is some directional dependency,

we call the metric g anisotropic.

The value γ(x) = maxv r(v,x)/minv r(v,x) defines the lo-
cal degree of anisotropy or simply local anisotropy and
γ = maxx γ(x) is the maximum anisotropy.

While the standard norm realizes the intuitive notion
of geodesic distance and is most common in applications,
more general anisotropic norms that incorporate directional
dependencies gained increasing interest in recent years.
Applications range from Meshing [BPC08, CBK12] and
Segmentation [BPC08, SJC09], over Path Planning [RR90,
LMS99] and Shape Matching [SJC09], to (mainly in 3D)
Medical Imaging [PWKB02, PWT05, BCLC09, BC11]. The
anisotropy can be related to principal curvature directions,
terrain steepness, surface vector fields, or MRI diffusion ten-
sors, to name some examples (cf. Section 3).

Such applications typically operate in a discrete setting,
e.g. on triangle meshes approximating manifolds. Numerous
methods for approximate computation of (mainly isotropic)
distances in such settings have been proposed. Their accu-
racy and efficiency typically depends on the quality of the
triangulation: intuitively, the “rounder” the individual trian-
gles, i.e. the closer to equilateral, the better. While working
with rather nice triangulations is quite common in the digital
geometry processing field (leveraged by powerful remeshing
techniques), a problem emerges when anisotropic distances
are dealt with: the notion of “roundness” is metric depen-
dent! This means a perfectly round triangle which is equi-
lateral in the standard metric can be a “cap” or “needle” far
from round when viewed under another, anisotropic metric.

Unfortunately, when naïvely adapting traditional meth-
ods to non-standard metrics, they expect element roundness
with respect to these metrics, while the meshes typically
used in applications are optimized with respect to the stan-
dard metric – as often favored by the other processing steps.
Hence, in practice anisotropic distance computations quickly
arrive at inacceptably low accuracy with increasing degree of
anisotropy, as illustrated in Figure 1 for γ = 20.

1.1. Contribution

In this paper we show how (and how well) known distance
computation methods proposed for the isotropic standard
scenario can deal with general metrics, analyze the inherent
issues, and discuss the results that can be achieved. For met-
rics with a high degree of anisotropy it turns out: typically
either the runtime gets high or the accuracy low. This is prob-
lematic for practical applications in Computer Graphics and
Geometry Processing as they rely on distance computations
as a fundamental operation that is used many times.

Improving upon this, we propose Short-Term Vector
Dijkstra: an algorithm that can intuitively be understood as
Dijkstra’s classical shortest path algorithm equipped with a
vector-valued short-term memory. It is fast and easy to im-
plement (hardly more complex than Dijkstra’s method itself)
while providing a practical level of accuracy even for metrics
with a high degree of anisotropy.

2. Related Work

Exact Distances Sophisticated methods using window
propagation or sequence trees [MMP87, CH90, SSK∗05,
XW09] allow for the computation of exact geodesic dis-
tances on triangulated surfaces. Note that this exactness is
with respect to the piecewise-linear surface specified by the
mesh M. In geometry processing scenarios where M itself is
an approximation of a (piecewise) smooth manifold, the ex-
pense of employing such exact algorithms can be futile de-
pending on the application. This holds even more when we
turn our focus to non-standard metrics which are also speci-
fied only approximately, e.g. discretely per mesh element.

Graph Approximation Dijkstra’s classical shortest path
algorithm computes shortest paths and distances in graphs.
By choosing an appropriate graph and suitable edge weights
we can use the corresponding weighted graph distance to ap-
proximate distances on M. In the simplest case this graph is
the 1-skeleton, i.e. the edge graph, of the mesh M, where
the edges are weighted by their length. Higher accuracy,
and actually an arbitrary balance between speed and accu-
racy, can be achieved by constructing a graph with addi-
tional Steiner vertices on M’s edges and edges across M’s
faces [Lan99,LMS97,KS00]. The addition of edges between
non-adjacent but nearby vertices [CBK12] allows for faster
computations and (at comparable graph size) higher accu-
racy, but on the downside no arbitrary balancing is possible.

Consistent Approximation In contrast to these
Dijkstra-based approaches, so-called Fast Marching meth-
ods compute and propagate distances not only along edges
of a graph, but also “continuously” across the faces of
a triangle mesh [KS98, SV00, Tsi95]. By appropriate
choices of the per-face propagation rules the approximation
can be made consistent – in the sense that the results
could be driven towards the exact solution by refining the

c© 2013 The Author(s)
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mesh. For this, M needs to be an acute triangulation, no
obtuse inner angles are allowed. As this is hardly ever
the case for unstructured meshes in practice, techniques
that add additional virtual edges/triangles to be consid-
ered during the computation have been presented as a
remedy [KS98, SV04, YSS∗12]. Alternative non-linear
propagation rules have been proposed [NK02, TWZZ07],
which can typically increase accuracy in practice – although
at the expense of losing consistency [WDB∗08].

Non-Propagative A very different approach has been
presented by Crane et al. [CWW13]. An approximation to
the intrinsic distance field of a source is computed by means
of solving two global linear systems instead of explicitly
propagating distances from the source over the surface. An
interesting property is leveraged by the information about
sources appearing only on the right hand side of the system:
after a pre-factorization, distance fields for different sources
can be computed very efficiently (basically in linear time).

3. Anisotropic Metrics

We consider a discretized setting where, on a triangle mesh
M, an (anisotropic) norm ‖·‖g is specified in a sampled man-
ner. The samples can be given per vertex, edge, or face of
M, denoted as ‖ · ‖gv , ‖ · ‖ge , or ‖ · ‖g f , respectively – where
necessary, we can approximate one form from another via
averaging/interpolation.

Looking at the application scenarios of anisotropic met-
rics which appeared in the literature so far, most often Rie-
mannian metrics are dealt with. In such case, the correspond-
ing norms can conveniently be expressed through a tensor
field G as ‖v‖gx =

√
vT Gxv. Popular examples include:

• Curvature tensor: using the shape operator, tensors
whose eigenvectors are aligned with directions of mini-
mal and maximal curvature of M and whose eigenvalues
are related to the magnitude of minimal and maximal cur-
vature can be constructed. Figure 1 exemplarily visualizes
such curvature-related tensors using ellipses.
• Vector field tensor: using the vectors of a tangent vec-

tor field as first eigenvector and given two (global) coef-
ficients to be used as eigenvalues, tensors “aligned” with
the field can be constructed, e.g. to guide geodesic curves
accordingly [CBK12].
• Diffusion tensor: the characteristics of the water diffu-

sion process in biological tissue can be estimated from
magnetic resonance imaging (MRI) acquisitions and be
expressed as a tensor field. Note that this is typically ap-
plied in 3D volumes. While we focus on 2-manifolds here,
we show in Section 6.2 that our novel method is as well
applicable to volumetric meshes or grids.

While such tensor based metrics are widely used, it
bears noting that also more general metrics, based on non-
elliptic norms, are of interest. Examples are terrain steepness

profiles [LMS99], curvature (variation) minimizing met-
rics [YSS∗12], or high angular resolution diffusion imaging
(HARDI) metrics [PWT05]. We will hence keep the exposi-
tion general instead of restricting to Riemannian metrics.

4. Generic Adaptation

Before elaborating on the possibilities for individual adapta-
tion of the available algorithms to a non-standard norm ‖·‖g
in Section 5, we discuss a generic way (with certain limita-
tions) in the following.

4.1. Discrete Metric

Typical implementations of the abovementioned distance
computation algorithms use the vertex coordinates to derive
metric dependent properties like edge lengths, angles, and
areas. In this way computations implicitly rely on the stan-
dard metric induced by M’s embedding in Euclidean space.

By not taking any extrinsic vertex coordinates into ac-
count, but instead relying on intrinsic edge lengths, com-
puted according to ‖ · ‖g as `g(e) = ‖~e‖ge , most distance
computation algorithms can directly be adapted to non-
standard norms (an exception is [CBK12], which relies on
(relative) tangent plane orientation information). To that end
one, where required, computes angles and areas based on the
intrinsic edge lengths. The intrinsic area A of a triangle with
edge lengths a, b, c can be computed using Heron’s formula

A =
1
4

√
(a+b+ c)(−a+b+ c)(a−b+ c)(a+b− c)

and the inner angle α opposing the edge with length a using
the half-angle theorem

tan
α

2
=

√
(a−b+ c)(a+b− c)

(a+b+ c)(−a+b+ c)
.

While being extremely simple, this generic strategy has a
few disadvantages:

Loss of fidelity The metric information is injected solely
via the intrinsic edge lengths, which specifiy the so-called
discrete metric† of the mesh. While such a discrete metric
captures all the information of a (sampled) Riemannian met-
ric, we inevitably lose fidelity when discretizing a more gen-
eral (non-elliptic) norm in this way.

Violation of triangle inequality The computed intrinsic
edge lengths might not fulfill the triangle inequality every-
where (strictly speaking, they do not form a discrete metric
in this case). We found this to rather be the typical behavior
than the exception, especially for high degrees of anisotropy,
as also described by Kovacs et al. [KMZ11]. For some al-
gorithms this can be unproblematic, for others (which need

† In literature not related to meshes the term discrete metric by con-
trast homonymously refers to a metric which is 0 or 1 everywhere.

c© 2013 The Author(s)
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Figure 2: Left: Anisotropic Riemannian metric, visual-
ized through inverse tensor ellipses (intuitively showing the
“speed profile” of the metric). Middle: Isotropic input mesh.
Right: Corresponding intrinsic Delaunay retriangulation.

to derive angles or areas from these lengths) this is catas-
trophic. Edge lengths `′(e) fulfilling all triangle inequalities
closest to the desired lengths could in such cases be found
via a suitable inequality-constrained least-squares system:

∑
e

(`′(e)− `(e))2→min s.t. `′(ei)≤ `′(e j)+ `′(ek)− ε

for all edge triples ei,e j,ek incident to a common face, i.e.
we have three inequality constraints per face.

Low triangulation quality The intrinsic roundness of
the triangles is typically very bad, especially for higher de-
grees of anisotropy, i.e. there are angles close to 180◦ as well
as angles close to 0◦. For some algorithms this implies a low
accuracy, for others a higher runtime. A remedy can be to
retriangulate the mesh by means of an intrinsic Delaunay
triangulation as detailed in the following.

4.2. Intrinsic Delaunay Triangulation

Using a Delaunay retriangulation algorithm which is based
on an intrinsic discrete metric [FSSB07] we can adjust the
connectivity of the mesh so as to obtain a mesh whose ele-
ments are nice with respect to this intrinsic metric (cf. Fig-
ure 2) – to the degree permitted by the given vertex set.
A complete intrinsic remeshing, which not only adjusts the
connectivity but also redistributes vertices, is a theoretical
option that could lead to even better results but would be
rather problematic depending on the application.

While this intrinsic Delaunay Triangulation (iDT) can sig-
nificantly improve the distance computation results of sev-
eral algorithms, there are some drawbacks, too:

• Numerical inaccuracies can hinder the iDT’s correct exe-
cution and termination, thus demand epsilon tweaking,
• The application and underlying data structures must sup-

port non-regular meshes [FSSB07] (or the algorithm must
be relaxed to avoid such configurations),
• The input edge lengths must fulfill the triangle inequality

everywhere,
• The worst case runtime complexity is quadratic in the

mesh size.

5. Individual Adaptation

We now outline the algorithm specific effects when using
the generic adaptation possibilities presented in the previous
section and show options for improved, individual adapta-
tion where possible.

5.1. Dijkstra

Clearly, the simplest solution to compute approximations to
distances with respect to non-standard metrics is to apply
Dijkstra’s algorithm, taking the intrinsic edge lengths of the
discrete metric into account. Note that, due to the graph na-
ture of the algorithm, fulfillment of the triangle inequality is
not required. Unfortunately, the (already in the isotropic case
relatively high) average approximation error increases with
increasing anisotropy, quickly leading to unacceptably low
accuracy. Using the iDT, however, accuracy can be brought
closer to the level of the isotropic case. Figure 3 illustrates
this using the setup from Figure 2 with anisotropy γ = 20.

The Dijkstra-based method of Lanthier [Lan99] which
considers additional vertices and edges across faces can be
adapted to the anisotropic case as follows: instead of deriv-
ing the intrinsic lengths of the additional edges from the dis-
crete metric, we calculate the length of an edge across face
f directly using ‖ · ‖g f . This allows for higher fidelity in the
case of non-Riemannian metrics. Figure 4 illustrates the be-
havior for increasing numbers of added vertices and edges.

In the Dijkstra-based method of Campen et al. [CBK12]
one can similarly compute intrinsic lengths for the additional
edges directly based on the norms ‖ · ‖ge instead of relying
on the discrete metric approach, as described by the authors.

5.2. Fast Marching

The Fast Marching approach [KS98] can be applied in the
case of a non-standard metric by relying on the correspond-
ing discrete metric (which must fulfill the triangle inequality
everywhere as we need to derive, e.g., angles from it). The
general problem is that in this metric the number of obtuse
triangles is often enormous, requiring the consideration of a
vast number of virtual edges. An iDT can be used to avoid
this – but has its own abovementioned shortcomings. Figure
5 illustrates the qualities of these options. Another option
is to deal with the inaccuracies due to obtuse angles using
recursive improvement techniques [KSC∗07]; however, this
means losing consistency and convergence properties.

Sethian and Vladimirsky [SV04] proposed a more general
Ordered Upwind method (OUM) which is already specifi-
cally designed for non-standard metrics. It is able to con-
sistently deal with arbitrary anisotropy, i.e. one, in theory,
has the possibility to arbitrarily increase accuracy through
mesh refinement. In comparison to the other discussed al-
gorithms, the implementation is probably the most com-
plex one and runtime and memory consumption is relatively

c© 2013 The Author(s)
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Reference Dijkstra Dijkstra iDT

Figure 3: Anisotropic distance field (up to a fixed maximum
distance, so as to enhance clarity). Left: Highly accurate
reference solution. Middle: Dijkstra result on an isotropic
mesh. Right: Dijkstra result computed on the iDT.

5 Steiner 10 Steiner 20 Steiner

Figure 4: Lanthier’s method’s distance field (on the iso-
tropic mesh). Left: computed with 5 Steiner vertices per
edge. Middle: 10 Steiner vertices. Right: 20 Steiner vertices.

high (cf. Section 7). A main factor is that, in addition to
the actual anisotropic distance propagation, as an ingredi-
ent isotropic distances from every single vertex of the mesh
to all of its neighbors within a radius of ‖emax‖γ need to be
computed. Here emax is the longest edge of the mesh and
γ the anisotropy, i.e. the radius can become quite large for
high anisotropies. While simple extrinsic distances can be
used for efficiency, higher accuracy on non-planar meshes is
achieved by computing intrinsic isotropic distances.

OUMIt is worth noting that, while other
methods typically overestimate dis-
tances, OUM can also heavily un-
derestimate distances, as can be seen
when comparing the inset figure to the
reference solution. This is due to the
fact that distances are propagated over
virtual triangles that span a long dis-
tance across the mesh. While the norm potentially varies on
the mesh under these virtual triangles, the propagation across
them is computed atomically using only the norm at one end
point, easily allowing for too long as well as too short results.

5.3. Heat Method

Just like the other algorithms discussed so far, the heat
method [CWW13] can be adapted to non-standard metrics
by formulating it in terms of the discrete metric, i.e. based
on the intrinsic edge lengths. This amounts to calculating the
cotangent weights, element areas, and divergence values in-
volved in the Laplacian and the Poisson system accordingly.

FM w/o virt. edges FM FM iDT

Figure 5: Fast Marching distance field based on the discrete
metric. Left: without virtual edges. Middle: with 13k virtual
edges. Right: on the iDT, where only 6k virtual edges are
necessary.

Heat Heat iDT tuned time step

Figure 6: Heat Method distance field based on the discrete
metric. Left: computed on the isotropic mesh. Middle: com-
puted on the iDT. Right: computed on the isotropic mesh but
with individually tuned heat integration time step.

Unless the anisotropy is very moderate, the low intrinsic
element roundness, however, does negatively affect robust-
ness. The resulting distance fields then often show distor-
tions and degeneracies like local minima. We observed that
improved results can be achieved by individually tuning the
heat integration time step instead of using the standard c = 5
proposed in the original publication, but found no general
rule for a good automatic choice. Again, an iDT can be an
option to remedy these problems (cf. Figure 6).

6. Short-Term Vector Dijkstra

We now present a novel method for the approximate com-
putation of distances with respect to arbitrary metrics. In or-
der to develop an intuitive understanding of the underlying
principle, let us consider Dijkstra’s classical algorithm again.
Due to its graph nature, the distance approximations result-
ing from this algorithm are the lengths of edge paths that
meander over the surface (cf. Figure 7 left) – not the lengths
of true geodesic paths. They are thus rather inaccurate and
also very triangulation dependent.

Instead of first measuring lengths of edges and then
(scalarly) summing these, an interesting alternative is to first
(vectorially) sum edges and then measure the length of the
sum. This vector-valued Dijkstra algorithm has been em-
ployed by Schmidt et al. [SGW06] to obtain geodesic dis-
tances for the purpose of local surface parameterization. Fig-
ure 7 illustrates the principle in the plane. In this planar case
and with the standard metric the resulting distances are ac-

c© 2013 The Author(s)
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Figure 7: Left: distance computation using Dijkstra’s clas-
sical algorithm. Middle: computation using a vector-valued
Dijkstra variant. Right: shortcomings of the vector-valued
Dijkstra variant: it is oblivious to holes, obstacles, and geo-
metric variations.

tually exact – as, independent of the path, the result is the
Euclidean length of the vector pointing from source to target
point. The concept can be transferred to 2-manifold meshes
by performing vector addition after transferring the vectors
into a common 2D reference system, which can be done in
different ways [SGW06, Sch13]. In any case, a major prob-
lem is that this method is basically oblivious to holes, ob-
stacles, and, when applied in a non-planar setting, geomet-
ric variations in the surface. Figure 7 right demonstrates this
issue. Hence, while being adequate and efficient for compu-
tations in a local neighborhood, it is unsuitable for global
distance computations on manifolds.

The idea underlying our Short-Term Vector Dijkstra
(STVD) is to form a hybrid out of the classical scalar-valued
variant and the vector-valued variant so as to combine the
respective advantages. Conceptually, we equip the scalar-
valued variant with a vector-valued short-term memory. In
this way the meanders of the edge paths through the trian-
gulation can locally be smoothed out without globally dis-
regarding the surface geometry. The following pseudo code
clarifies the details.

Algorithm: Short-Term Vector Dijkstra (STVD)
Input: polygon mesh, metric g, a vertex designated source
Output: vertex based field of geodesic distances to source

source.dist← 0 all other distance values initially∞
Q.insert(source) priority queue Q ordered by distance
while not Q.empty

v← Q.extract_minimum() get min. dist. vertex out of Q
v.final← true
for all w adjacent to v where not w.final

if update_dist(v,w) < w.dist
w.dist← update_dist(v,w)
w.pred← v
if not w in Q

Q.insert(w)

This looks very much like the standard Dijkstra algorithm
and indeed, if we use the following version of the up-
date_dist function this is exactly what we get.

100◦

200◦

120◦

240◦

E

ê j

e j

Figure 8: Unfolding of edge chains to the plane. Edge
lengths and relative 1-ring angles are preserved. The sum
vector E (red) is then subdivided according to the ortho-
projection of the individual edges. The resulting portions are
measured by the respective norms ‖ ·‖ge – here visualized as
tensor ellipses (blue) – and their lengths summed to get `g.

Function: update_dist(v,w) original Dijkstra version

return v.dist + `g(v,w) add length of edge (v,w) w.r.t. g

By instead exploiting a vector-valued short-term mem-
ory (a window of k preceding edge vectors), we obtain our
STVD algorithm using the following variant of the distance
update function:

Function: update_dist(v,w) our STVD version

tmp← w.pred
w.pred← v
dist←mink

i=1 w.predi.dist+`g
(

∑
i
j=1(w.pred j−1,w.pred j)

)
w.pred← tmp
return dist

where the predecessor relation is recursively defined as
w.predi+1 = w.predi.pred, with w.pred0 = w. It remains to
be clarified how the edges e j = (w.pred j−1,w.pred j) are
summed vectorially and how the length `g of the sum with
respect to g is measured:

The norms ‖ · ‖ge live in tangent planes, i.e. they allow to
measure vector lengths in 2D. We thus unfold the chain of
(directed) edges e j into a common plane (R2) while preserv-
ing edge lengths and relative 1-ring angles. Figure 8 illus-
trates this. Note that no actual embedding of the mesh is re-
quired for this. The norms ‖·‖ge (represented relative to their
corresponding edges) now allow us to approximately mea-
sure the length of the sum E = ∑ j ê j of the unfolded edge
vectors ê j in 2D. As these norms can differ, we decide how
large portion of E is measured by which norm based on the
edges’ (signed) orthogonal projections onto E. Concretely,
we use `g(∑ j e j) = ∑ j ê>j Ē ‖Ē‖gê j

(clamped toR≥0), where
Ē = E/‖E‖, in the above distance update function.

It is worth noting that we can choose between two alterna-
tives regarding the representation of the conceptual memory.
It can be represented either explicitly by storing vectors of
the last k− 1 edges (v.pred j,v.pred j+1) at each front vertex
v (in its local 2D coordinate system), or implicitly by gather-
ing these vectors using a short back-trace via the predecessor
relation when we need them in the distance update function.

With an appropriate choice of the short-term memory’s

c© 2013 The Author(s)
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STVDdepth k, the accuracy of the results is
immensely improved. The inset illus-
trates this for k = 10 (detailed quantita-
tive results are provided in Section 7).
Despite the lack of smoothness in some
regions, the result is closer to the ref-
erence than the alternatives from Sec-
tion 5 (except Figure 4 middle, right).

Note that for k = 1 STVD is equivalent to Dijkstra’s clas-
sical algorithm (generally overestimating distances), while
for k→∞ it becomes an all vector-valued variant (which
tends to underestimate unless the surface is developable and
free of holes). This can also be observed in the following
histograms which show the signed relative error distribution
over all vertices of all examples from Section 7 (for γ = 10):

80%
40%
0%

– 40%
k = 1 k = 2 k = 4 k = 6 k = 8 k = 10

In a previous method [CBK12] also edge chains up to a
length k were considered for distance computations. A fun-
damental difference is that the mesh graph is extended with
additional edges, increasing their total number by about two
orders of magnitude in practice. This has direct performance
consequences as the runtime of Dijkstra’s algorithm depends
on the number of edges. By contrast, our method performs
just one distance value update computation per original in-
put edge, just like the standard Dijkstra algorithm. This dif-
ference is due to not constructing (in advance) all possible
edge chains of length ≤ k, but implicitly (on demand) only
those which are actually proceeding in the direction of the
propagating front. Further differences are that, due to the
employed discrete exponential map, this previous method re-
lies on an embedding of the surface, and the construction is
specifically tailored to a direction field based metric.

6.1. Speed vs. Accuracy

Some of the discussed algorithms allow to trade speed for ac-
curacy at the user’s discretion. By using a higher number of
Steiner vertices in the edge-subdivision approach [Lan99],
or by refining the input triangle mesh using some steps of
1-to-4 splits prior to the application of the Ordered Upwind
method [SV04] (or, in the case of a Riemannian metric,
also the Fast Marching adaptation) higher accuracy can be
achieved – at the cost of quickly increasing runtime. Note
that such property is not to be taken for granted: for instance
the accuracy of distance computations using Dijkstra’s algo-
rithm does not generally increase under mesh refinement.

We empirically observed that such property can also be
established for our STVD. To this end we need to achieve
two seemingly contradicting goals: k needs to be increased
so as to increase the angular resolution of the distance prop-
agation, while the lengths of the used vector sums need to

be decreased so as to reduce the approximation errors of the
unfolding-based measurement. We can achieve both by re-
fining the mesh using 1-to-4 splits (reducing edge lengths by
a factor of 2) while increasing k by a factor < 2. The fol-
lowing table shows the decreasing mean error for increasing
levels of refinement on three exemplary models (γ = 20):

Level k ELKTOY GARGOYLE ROCKERARM

0 7 9.8% 25.7% 15.3%
1 10 5.1% 13.4% 11.6%
2 14 2.5% 8.2% 6.5%
3 20 1.5% 4.3% 3.9%

More interesting than this possibility, however, we deem
that, even in the case of strong anisotropy, STVD achieves
reasonable, relatively good results already on unrefined
meshes of resolutions typically encountered in the Computer
Graphics and Geometry Processing field (cf. Section 7).

6.2. Genericity

Polygonal Meshes It is worth noting that STVD does not
rely on the property that M is a triangle mesh, i.e. it can also
be applied to general polygonal meshes. Many other meth-
ods are designed specifically for triangle meshes and would
need to be adapted – or the polygon mesh be triangulated.

3D Meshes While our focus here is on 2-manifold sur-
face meshes, an interesting fact about STVD is that it can di-
rectly be applied also to volumetric meshes inR3 – whether
they consist of tetrahedral, hexahedral, or general polyhe-
dral cells. We simply skip the edge vector unfolding to the
plane and sum the 3D edge vectors directly (cf. Figure 9).
While also other methods can potentially be generalized to
this setting, this is less trivial. Challenges lie in the correct
determination of virtual simplices for the OUM or FMM,
establishing an intrinsic Delaunay tetrahedralization or fix-
ing violated tetrahedra inequalities, or in handling the large
number of additional edges, which in the case of straight-

Dijkstra STVD Dijkstra STVD

Figure 9: Volumetric distance fields computed in a hexahe-
dra and a tetrahedra mesh (sliced open to expose the inte-
rior). The constant Riemannian metrics used (depicted by
ellipsoids next to the models) have an anisotropy of 12. Just
like in the surface mesh case, Dijkstra’s algorithm heav-
ily overestimates distances, especially in vertical direction
where true distances are shorter due to the anisotropy.

c© 2013 The Author(s)
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forward generalization of Lanthier’s concept to 3D grows
quartically with the number of Steiner vertices per edge.

7. Results

In the previous sections we have discussed the qualitative
differences of the approaches that are available for the com-
putation of anisotropic distances. In order to get a quantita-
tive understanding for the accuracy and runtime performance
of all these options, we implemented all variants and per-
formed extensive experiments using various kinds of input
meshes (cf. Figure 10, 9K-183K triangles), metrics (vector
field based as well as curvature tensor based), anisotropies
(uniform as well as varying γ(x)), and algorithm parameters.

The reference solutions we compare against have been
computed using the edge-subdivision method of Lanthier
[Lan99] with 200 Steiner vertices per edge (and runtimes
of up to several hours for a single distance field). In this set-
ting for every single triangle there are more than 120,000
virtual edges crossing it, resulting in a highly accurate ap-
proximation of the true distances. We show the results using
error-over-runtime plots in Figure 11 (and using error his-
tograms in the supplemental material). Intuitively, the closer
a method lies to the bottom left, the better – as this means
that a low error (high accuracy) is achieved in a short time.
These plots further allow to quickly see what other options
apart from the “best one” are available, e.g. how much more
accuracy can be achieved by spending how much more time.

Regarding our STVD algorithm, we see that it lies in the
bottom left region across the different levels of anisotropy,
i.e. it achieves good results in short time when compared to
the other options – especially for higher anisotropies. Good
standard values for k can also be read from these plots: from
around 5 for low anisotropy to around 10 for anisotropy 50.
Note that such high anisotropy is not only of theoretical in-
terest, e.g. anisotropies of 30+ have been used in [CBK12].

For lower anisotropies, the Fast Marching method applied
to the intrinsic Delaunay triangulation of a subdivided ver-
sion of the input mesh is very competitive. Note that this
strategy requires several steps of preprocessing: 1) mesh
subdivision, 2) discrete metric computation, 3) reestablish-
ing triangle inequality fulfillment, and 4) iDT construction.
This also implies the drawbacks discussed in Sections 4.1
and 4.2 and can take a considerable amount of (possibly

Figure 10: Models used for the evaluation, depicted with ex-
ample fields. (From the AIM@SHAPE repository, the Image-
based 3D Models Archive, Télécom Paris, or created using
Cosmic Blobs R© by Dassault Systèmes Solidworks Corp.)

amortizable) time. By contrast, STVD operates directly on
the input mesh without the need for any preprocessing and
without implying additional complexity.

When a higher level of accuracy is required and more
time is available, the edge subdivision method of Lan-
thier [Lan99] proves to consistently provide a good option.

In isotropic scenarios the advantage of STVD over, e.g.,
Fast Marching or the Heat Method diminishes. However,
we observed that it is typically still very significant when
dealing with meshes with badly shaped elements. This is il-
lustrated here on an example mesh (γ = 1), where the error
(w.r.t. exact geodesic distances [SSK∗05]) is visualized:

Dijkstra FM Heat
(tuned time step)

STVD
(k=5)

12%

9%

6%

3%

0%

8. Conclusion

We have explored and discussed numerous options for
the computation of distance fields with respect to general
anisotropic metrics, based on generic as well as specific
adaptations of known algorithms. We compared all these in
terms of their accuracy and runtime performance and en-
riched this zoo of methods with our Short-Term Vector Di-
jkstra. Despite its simplicity, this method proved to provide
a very interesting novel option, allowing to quickly compute
results with practical accuracy without the need for complex
optimization or costly preprocessing.

In the future we would like to explore ways to enhance
the smoothness of the results. Possibilities could be the use
of averaging schemes during propagation [Sch13] or of a
kind of “gradually fading memory” instead of a hard limit k.
The use of a locally varying k (based on local feature size,
anisotropy, mesh density) is another interesting direction.
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