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Figure 1: Left: Global parametrization with continuous rigid transitions; notice the mismatch of the depicted isolines across the red cuts.
Right: Global parametrization with quantized (or integral) transitions computed robustly and efficiently by our method.

Abstract

Global surface parametrization often requires the use of cuts or
charts due to non-trivial topology. In recent years a focus has been
on so-called seamless parametrizations, where the transition func-
tions across the cuts are rigid transformations with a rotation about
some multiple of 90◦. Of particular interest, e.g. for quadrilateral
meshing, paneling, or texturing, are those instances where in addi-
tion the translational part of these transitions is integral (or more
generally: quantized). We show that finding not even the opti-
mal, but just an arbitrary valid quantization (one that does not im-
ply parametric degeneracies), is a complex combinatorial problem.
We present a novel method that allows us to solve it, i.e. to find
valid as well as good quality quantizations. It is based on an orig-
inal approach to quickly construct solutions to linear Diophantine
equation systems, exploiting the specific geometric nature of the
parametrization problem. We thereby largely outperform the state-
of-the-art, sometimes by several orders of magnitude.
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1 Introduction

The parametrization of surfaces is one of the basic tools used in
countless Computer Graphics and Geometry Processing applica-
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tions [Floater and Hormann 2005]. Of particular interest are global
parametrizations that cover the entire surface. Unless the surface is
of disc topology, such global parametrizations over R2 inevitably
need to consist of charts (or a single chart), with non-identity tran-
sitions across the cuts [Sorkine et al. 2002; Gu et al. 2002; Lévy
et al. 2002; Dong et al. 2006], because the surface is not globally
homeomorphic to a subset of the plane.
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Seamless Parametrization

In recent years a focus has been on parametrizations where the tran-
sition functions across the cuts are not arbitrary but of a very re-
stricted class: rigid transformations with a rotation angle of some
multiple of 90◦ – sometimes termed seamless parametrizations
[Myles and Zorin 2012; Purnomo et al. 2004] (cf. Figure 2 middle).
Such transitions imply that the singularities of the parametrization
are of a very specific type: the Gaussian curvature of the induced
metric is a multiple of π

2
at every singularity. For most applica-

tion scenarios of such seamless parametrizations it is necessary that
in addition the translational part of these transitions is integral (or,
almost equivalently, the singularities have integer parameters) (cf.
Figure 2 right). More generally we can speak of quantized trans-
lations or parameters, which are integer up to some global fac-
tor. Such parametrizations are sometimes called integer-grid maps
[Bommes et al. 2013b]. They are important for quadrilateral mesh-
ing [Kälberer et al. 2007; Bommes et al. 2009; Pietroni et al. 2011;
Li et al. 2011; Bommes et al. 2013b; Campen and Kobbelt 2014b;
Panozzo et al. 2014; Ebke et al. 2014] and paneling [Liu et al. 2011;
Pietroni et al. 2015], as well as high-quality texturing [Ray et al.
2010].

Figure 2: Behavior of various classes of parametrizations across
cuts (red). Left: arbitrary transitions. Middle: so-called “seam-
less” parametrization with rigid transitions with rotational conti-
nuity across the cut. Right: quantized, integral parametrization.
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While a number of powerful methods for the generation of contin-
uous seamless parametrizations has been presented during the last
decade, most notably by Myles et al. [2012; 2013; 2014] and as
a component of quadrilateral meshing techniques [Kälberer et al.
2007; Bommes et al. 2009], the issue of quantization has not yet
been addressed to a satisfactory level.

Integral Parametrization

At first sight quantization may seem like a trivial problem: just
compute a seamless parametrization, round (or quantize) its con-
tinuous translations, and re-optimize the parametrization with the
translation variables constrained to these rounded values. Unfortu-
nately, the translations are not mutually independent, and they are
coupled with the singularity parameters. Hence, simply rounding
to the closest integers can lead to infeasibility of the constrained
problem as well as to degeneracies in the resulting parametrization
due to singularities forced to collapse in parameter space (cf. Fig-
ure 3). While the first problem can be solved by determining a set
of independent variables, the latter problem is much more severe.

In previous work, three different strategies have been followed for
parametrization quantization:

• Direct Rounding [Kälberer et al. 2007]

• Iterative Rounding [Bommes et al. 2009]

• Branch-and-Bound Rounding [Bommes et al. 2013b]

Direct Rounding rounds independent variables of a continuous so-
lution to integers and then re-solves the parametrization optimiza-
tion system with these variables fixed. Note that in this case the
parametrization problem needs to be solved twice.

Iterative Rounding rounds the variables one-by-one, each time re-
solving the system with an increasing number of variables fixed.
Note that here the parametrization problem needs to be solved n+1
times, where n is the number of integer variables. This typically
leads to lower distortion in the final result [Bommes et al. 2013a].
Both methods take no measures to prevent singularities from col-
lapsing. Hence, especially when the quantization is performed to a
coarse scale, there is a significant risk that the final parametrization
will be degenerate – or infeasible, if anti-degeneracy constraints
[Lipman 2012; Bommes et al. 2013b] are employed. In other
words: these quantization methods are non-robust.

Branch-and-Bound Rounding is more powerful. It does not de-
termine just one quantization but explores virtually all possible dis-
crete variable assignments. Note that here the worst case asymp-
totic complexity is exponential in the number of discrete variables.
By checking the individual resulting parametrizations for degen-
eracies it is possible to determine a valid quantization, as well as
(in theory) ultimately the optimal one. The employed general pur-
pose solver is unaware of the geometric nature of the problem and

Figure 3: Naı̈ve rounding to integral transitions does easily force
singularities to collapse in parameter space. No regular, locally in-
jective parametrization can then be obtained, because degenerate
or inverted elements are implied. This, for instance, leads to broken
isolines (black), non-four-sided isoline-polygons, etc., in the vicin-
ity of singularities on the surface (red and blue).

the implications of its internal optimization steps (cf. Section 3.4).
To achieve practical performance thus an extreme-decimation tech-
nique and simplification heuristics [Bommes et al. 2013b] were
proposed to reduce complexity for a significant speed-up, at the
expense of weakening the notion of optimality. Still, for problem
instances with some hundred singularities it can take hours or days
until a valid solution is found.

1.1 Contribution

We present a novel technique to generate valid quantizations, thus
integral global parametrizations. In contrast to Direct Rounding
and Iterative Rounding, it is guaranteed to yield valid results, i.e. it
addresses the inherent robustness issue of these approaches. Com-
pared to Branch-and-Bound Rounding, results of similar quality are
obtained in a fraction of the time required, i.e. the performance
issue of this approach is addressed. In complex instances with
thousands of singularities, our technique yields high quality results
within minutes, while Branch-and-Bound Rounding typically does
not find any valid solution even after 24h of allotted run time.

1.2 Outline

In Sections 3 and 4 we introduce the formal background and moti-
vate our approach. In Section 5 then the fundamental data structures
are introduced, before the core of the actual quantization algorithm
follows in Section 6. In Section 7 we describe how the final in-
tegral parametrization is obtained, evaluate and compare results in
Section 8, and discuss extensions and broader applicability in Sec-
tions 9 and 10.

2 Related Work

Besides the global parametrization methods already discussed in
the previous section, which are unstructured in the sense that ar-
bitrary cut graphs are used, there are a number of structured ap-
proaches, which rely on specific classes of cut graphs, in particular
chart layouts with triangular [Khodakovsky et al. 2003; Pietroni
et al. 2010; Guskov et al. 2000] or quadrilateral [Eck and Hoppe
1996; Purnomo et al. 2004; Dong et al. 2006; Zhang et al. 2010;
Tarini et al. 2011; Campen and Kobbelt 2014b] regions. Methods
which use cuts without restrictions on the transitions (e.g. [Sorkine
et al. 2002; Lévy et al. 2002]) are less related.

The quad layout based variants particularly lend themselves to
(continuous) seamless parametrization. Even the quantization prob-
lem is quite easily solved in these cases (the reasons are elucidated
in Section 10.1), however, at the cost of first having to construct the
quad layout. Unfortunately, doing this in such a way that the layout
allows for a high-quality parametrization is a very intricate problem
in itself [Campen et al. 2012; Campen and Kobbelt 2014a], appar-
ently not less complicated than the problem we address here. In
fact, a recent proposal for quad layout generation was to derive the
layout from a coarsely quantized global parametrization [Bommes
et al. 2013b].

Non-conforming layouts (i.e. chart layouts with T-junctions) have
also been used for global parametrization purposes. The regions
can be quadrilateral [Bommes et al. 2008; Myles et al. 2010] or of
more general shape [Tong et al. 2006]. We discuss the problem of
quantizing such T-mesh based parametrizations in Section 10.1.

A way to parameterize surfaces of arbitrary topology without the
need for explicit cuts is to use so-called periodic parametrizations
[Ray et al. 2006]. These do not directly yield a conforming grid
structure on the surface.



3 Formal Setup

3.1 Global Parametrization

We consider piecewise linear surface parametrizations. These can
be represented by (u, v)-coordinates (parameters) at each vertex
of a triangle mesh. The mesh is virtually cut along a subset of its
edges, the so-called cut-edges. Hence multiple copies of the ver-
tices along these cuts exist and carry their own (u, v)-coordinates.
Per cut-edge e a (directed) transition function τe exists, which re-
lates the (u, v) coordinates of such pairs of vertex copies:

τe(ui, vi) = (uj , vj). (1)

Definition 1. We say the parametrization is seamless if for all τ

τ(u, v) = R r
90◦(u, v) + (s, t), r ∈ {0, 1, 2, 3}, (s, t) ∈ R

2.

The so-called matchings r can be considered not to be part of the
actual parametrization problem. They are derived a priori, e.g. from
cross fields [Kälberer et al. 2007; Bommes et al. 2009] or cone met-
rics [Myles and Zorin 2012]. Vertices at which the parametrization
needs to be singular (in particular vertices around which the match-
ings do not sum to a multiple of 4) are called singularities. Let their
set be S and their number be n from now on.

Definition 2. We say the parametrization is integral if for all τ

τ(u, v) = R r
90◦(u, v) + (s, t), r ∈ {0, 1, 2, 3}, (s, t) ∈ Z

2

and (ui, vi) ∈ Z2 for all i ∈ S.

Note that both conditions, (s, t) ∈ Z2 and (ui, vi) ∈ Z2, are nec-
essary; they are strongly related but not equivalent. In particular,
(s, t) ∈ Z2 implies (ui, vi) ∈ 1

2
Z2 for most singularities i ∈ S

[Ebke et al. 2013; Kälberer et al. 2007] but it does not imply ac-
tual integrality. Vice versa, singularity parameter integrality implies
(s, t) ∈ Z2 on genus g = 0 surfaces, but in general 4g continuous
degrees of translation remain free.

The variables of the parametrization problem are the (u, v)-
coordinates (per vertex) and the (s, t)-translations (on cuts). Note
that this set of variables is not completely independent; for instance,
the parameters of copies of vertices at cut edges are related by mul-
tiple transitions, and singularity parameters are related to transla-
tions by fixpoint formulas [Ebke et al. 2013], implying certain inter-
dependencies. In the following we denote by z those variables (of
either kind) which need to be integral for an integral parametriza-
tion.

Based on this an energy functional to be minimized is formulated:

E({(u, v)}, {(s, t)}) → min, subject to (1). (2)

Our technique is oblivious to the concrete nature of this func-
tional, so, for instance, a field-guided parametrization energy
[Kälberer et al. 2007; Bommes et al. 2009], a least-squares con-
formal parametrization energy [Lévy et al. 2002], or an as-rigid-
as-possible parametrization energy [Myles and Zorin 2012] could
be used. We use the field-guided version [Bommes et al. 2009]
for our demonstrations in this paper, as it is very flexible and quite
prevalent in our targeted areas [Kälberer et al. 2007; Bommes et al.
2009; Pietroni et al. 2011; Li et al. 2011; Bommes et al. 2013b;
Ebke et al. 2014; Campen and Kobbelt 2014b; Panozzo et al. 2014;
Campen and Kobbelt 2014a; Jiang et al. 2015].

Definition 3. A parametrization is regular if all triangles have a
positive area in parameter space.

This leads to the further constrained optimization problem

E({(u, v)}, {(s, t)}) → min, s.t. (1) and regularity. (3)

Under reasonable topological assumptions on the provided match-
ings1, the existence of seamless as well as integral solutions to
(3) (although not necessarily at the given input mesh resolu-
tion/discretization) is a corollary of the quadrilateral cell decom-
position existence proof by [Jucovič and Trenkler 1973]. In prac-
tice the discretization as well as the non-convexity of the regularity
constraints can be an issue; we discuss this aspect in Section 7.1.

3.2 Quantization

Definition 4. A quantization σ is the assignment {zi = ci, . . . },
ci ∈ Z, of integers to some translations and singularity parameters,
i.e. certain variables of (3). A quantization is called consistent if
no contradictions with respect to interdependencies of the assigned
variables are implied, i.e. if (1) is respected. If all integer degrees
of freedom are fixed, the quantization is called complete, otherwise
partial. A quantization σ∗ is called completion of σ if σ ∪ σ∗ is a
complete quantization.

With slight abuse of terminology we shall also call a parametriza-
tion which respects σ a quantization. It will always be clear from
the context whether an assignment or a parametrization is meant.

As a more general form of quantization one could require ci ∈ sZ
for some global constant s ∈ R. As this corresponds to a mere
global rescaling of the parametrization, we, w.l.o.g., restrict to inte-
gral values in the following.

Fundamental Problem: Not every consistent quantization σ al-
lows for a regular parametrization, i.e. {(3) s.t. σ} can be infeasible.
The quantizations obtained by Direct Rounding or Iterative Round-
ing can exhibit exactly this problem, especially in the case of coarse
quantization scales. Our method addresses the problem of finding
quantizations for which {(3) s.t. σ} is feasible.

Definition 5. A (complete or partial) quantization σ is valid
iff {(3) subject to σ} is feasible, i.e. if there exists a regular
parametrization that respects σ. It is called validly completable
if a completion σ∗ exists such that σ ∪ σ∗ is valid.

3.3 Feasibility

Probably the most common reason for infeasibility in practice is
the parametric coincidence of singularities. If a quantization makes
two singularities coincide parametrically, this can force the mesh
region inbetween to either degenerate or partially invert, i.e. some
triangles necessarily assume a zero or negative area in parameter
space (cf. Figure 3), intuitively because there is just no room for
these triangles between the two singularities in parameter space.
As such violation of (3) is unacceptable or at least undesirable in
all known applications, such quantizations must be avoided.

Note that parametric coincidence of singularities i and j does not
mean (ui, vi) = (uj , vj), because in the given setting transitions
need to be taken into account. So instead this means (ui, vi) =
τp(uj , vj), for some path p on the surface connecting i and j. τp is
the transition along p, i.e. the concatenation of all transitions of cut-
edges crossed by the path. As τp does not depend on the actual path
p but just on its path homotopy class c (with respect to the surface
punctured at the singularities) [Myles et al. 2010], this is equivalent
to (ui, vi) = τc(uj , vj) for some path homotopy class c.

1The Poincaré-Hopf theorem must be fulfilled. This is guaranteed by all

known singularity (thus matching) determination algorithms. Furthermore,

index ≥ 1 singularities and a particular special case must be excluded: a

single pair of singularities on a genus 1 surface [Jucovič and Trenkler 1973].



However, the absence of such coincidences is neither a necessary,
nor known to be a sufficient condition for feasibility. It is not nec-
essary because parametrization regularity only requires local, not
global injectivity of the parametrization. The chart(s) of a regular
seamless parametrization thus form overlapping polygons in pa-
rameter space [Weber and Zorin 2014].

Neglecting the possible insufficiency, one could think of specifying
constraints (ui, vi) 6= τc(uj , vj) for all i, j, c and providing them to
a generic solver – but these constraints are very complex in nature.
They are disjunctions of strict inequality constraints, (ui<sj) ∨
(ui>sj) ∨ (vi<tj) ∨ (vi>tj), where (sj , tj) = τc(uj , vj), and
thus are non-convex. This and the fact that in general there are
infinitely many path homotopy classes c precludes this approach.

The singularity spacer strategy employed by Bommes et al.
[2013b] can be interpreted as a strong simplification using two
heuristics: one to select only a small finite subset of these con-
straints, and one to choose one of the four disjuncts, thus making
the constraints convex. Due to the first heuristic it does not prevent
all invalid quantizations from arising during optimization, and the
second excludes a subset of the valid quantizations.

3.4 Our Approach

We follow a novel approach to effectively and efficiently circum-
vent these problems. While previous approaches (Iterative Round-
ing, Branch-and-Bound Rounding) are conceptually based on in-
crementally building chains of partial quantizations

∅ ⊂ σ1 ⊂ σ2 ⊂ σ3 ⊂ · · · ⊂ σk, σk complete,

our method is based on building a series of transformations between
entirely complete quantizations

σ0 → σ1 → σ2 → σ3 → · · · → σk, σk valid.

This change of strategy has significant implications (and ultimately
is the key to achieving efficiency and robustness): for an arbitrary
partial quantization we are not aware of any polynomial time al-
gorithm to decide whether it is validly completable. Previous ap-
proaches are thus essentially “in blind flight” during the chain build-
ing – in the worst case only in the very end (in case of a branching
strategy: at a leaf of the branch tree) invalidity can be recognized.

By operating within the class of complete quantizations only, we
get rid of this complication: only the validity of complete quanti-
zations, not the valid-completability of partial quantizations is of
concern. We will see that, by performing a change of variables,
one can decide this validity of a class of complete quantizations
in empirically linear time. This ultimately allows us to transform
one (valid) complete quantization into another in quasilinear time,
making building the series of transformations very efficient.

Method Overview

1. Solve (3) to obtain seamless parametrization P .

2. Construct valid complete quantization σ guided by P :

(a) Extract motorcycle graph T of P .

(b) Evolve the quantization σ using T ’s Hilbert basis.

3. Solve {(3) s.t. σ} to obtain quantized parametrization.

Steps 1 and 3 are based on previous work and described in Sec-
tion 7. The actual quantization is performed in step 2. Section 4
motivates the choice of the so-called motorcycle graph as underly-
ing structure, Sections 5 deals with step 2(a), i.e. its construction as
well as its properties, and Section 6 describes the central step 2(b).

4 Differential Parameters

Imagine an arbitrary embedded directed graph on the surface, hav-
ing the singularities as nodes, connecting all of them. Each edge of

i

j

(∆uijc,∆vijc)

c

the graph can be identified with a
tuple (i, j, c), representing its start
node i, its end node j, and the path
homotopy class c it belongs to. We
can assign to each edge a vector
(∆uijc,∆vijc), whose function is
specifying the parametric difference
between i and j. Fixing (u0, v0) = 0
and using the definition

(uj , vj) = τc(ui, vi)+(∆uijc,∆vijc)

these differential parameters (∆uijc,∆vijc) obviously imply all
singularity parameters (assuming there are no contradictions). If
the graph includes (undirected) cycles which generate the surface’s
fundamental group, also all translations are implied, i.e. the addi-
tional 4g degrees of freedom (cf. Section 3.1) are fixed. If the dif-
ferential parameters are integral, so are all the singularity param-
eters and translations. Therefore, we can quantize the differential
parameters instead. Note that depending on the choice of graph the
number of edges can be between max(0, n−1) + 2g (a spanning
tree of the n singularities and 2g homology basis loops) and infinite
(because of infinitely many homotopy classes c).

The motivation to use these differential parameters is the following:
with the right choice of graph structure we enable the design of
an efficient test for quantization validity. The key is choosing a
graph that forms a cell decomposition of the surface, i.e. its edges
do not intersect (only at the nodes) and each cell is homeomorphic
to a disc. The vectors (∆uijc,∆vijc) of the edges bounding a cell
then form a polygon in parameter space (after transformation into a
common chart, if necessary).

To get a first idea of the beneficial implications of this, assume that
all these vectors are non-zero and all these polygons are simple and
have positive signed area. Then all singularities are separated and
one can conclude that the quantization is valid: each surface cell
can regularly be mapped to its polygon, and the union of these maps
provides a witness parametrization (not necessarily linear per trian-
gle) which demonstrates feasibility.

The situation gets particularly simple when we construct the graph
such that the (∆uijc,∆vijc), by construction, form axis-aligned
rectangles instead of arbitrary polygons: they are always convex,
thus simple, and their orientation can be controlled easily through
the signs of their height and width. To enable such cells we allow
the graph to contain additional nodes besides the singularities. Note
that in this case a quantization can be valid even if some differen-
tial parameters are zero and polygons degenerate – as long as the
singularities are separated by some positive polygons.

5 T-Mesh

The particular type of embedded graph we consider is the edge
graph of a so-called T-mesh, an arbitrary non-conforming partition
of the surface into four-sided cells, whose nodes include (but are
not restricted to) the singularities.

As we want to restrict to axis-aligned rectangles in parameter space,
there is no need to assign a differential tuple (∆ue,∆ve) to each
edge e; one differential parameter, denoted xe, suffices. It can in-
tuitively be understood as the parametric length of e. In order to
restrict to non-negative signed area, we orient all edges such that
the constraints xe ≥ 0 imply this. It will later become clear that



a restriction to xe > 0 (while it would simplify the matter) would
often exclude the quantizations of highest quality.

As x (the set of all differential parameters xe) implies z (the integer
variables of the integral parametrization problem), an assignment of
integer values to x can be called quantization as well.

Due to the non-negativity constraints on x, the assigned directions
of the T-mesh edges imply a partial ordering of the graph nodes
in parameter space a priori. To not let this impair the quality of
the quantizations that can be obtained, the T-mesh should be con-
structed in such a way that for each edge the directional choice is
natural and unlikely to preclude any good quantization.

5.1 Motorcycle Graph

To this end we construct the T-mesh graph directly based on the
continuous parametrization that is to be quantized. We solve (3) (cf.
Section 7) to obtain a continuous, seamless parametrization, and ex-
tract this parametrization’s motorcycle graph T (cf. Figure 4). Its
construction has been described for the discrete case (quad mesh)
by Eppstein et al. [2008], and it can analogously be constructed
by tracing parametrization isolines (separatrices) instead of quad
mesh edges, starting from the singularities of the parametrization.
We use sanitization and tracing algorithms as described by Ebke et
al. [2013] to perform the tracing in a numerically robust manner.
If there are no singularities, one arbitrary, regular starting point is
picked. T is known to be a cell decomposition of the surface [Epp-
stein et al. 2008].

Each edge of this graph is in line with either the parametric u- or
v-direction of the optimal continuous parametrization., i.e. we can
orient it in positive parametric direction in a natural manner.

It is important to realize that we only make use of T ’s topological
structure – its geometric embedding (as shown in Figure 4) is of no
concern. In particular will the final quantized parametrization (cf.
Section 7) not be forced to align to the edges of T on the surface
in any way. We also note that, while T is not of minimal size (cf.
Section 4), the number of its nodes and edges still is only O(n)
[Eppstein et al. 2008].

Figure 4: Motorcycle graph T-mesh obtained from a continuous
seamless parametrization. The black graph edges emanate from
the parametrization’s singularities (red and blue) and end in a T-
junction (or, rarely, in a cross-junction or at another singularity).

5.2 Checking Validity on a T-Mesh

Assume a complete assignment of x-values to the edges of T is
given. To decide whether this quantization is valid, we exploit
the fact that T forms a cell decomposition and each cell has non-
negative dimensions. Conceptually, for a singularity i we consider
the set P 0(i) of cells of T which have zero distance (in terms of the
cell dimensions specified by x) to i. Notice that only a singularity
j incident to a cell from P 0(i) can be unseparated from i, violating
validity. Due to non-negative cell dimensions, P 0(i) is a connected
region and all incident edges can thus be conquered locally, using a
graph search starting from i.

To get an idea of this process, consider a node w1 of T and an in-
cident edge e, its other incident node being w2. Assume (w.l.o.g.)
that e is an edge aligned to the u-direction at w1. Then w2 has para-
metric difference (±xe, 0) (in w1’s local system) from w1 along e.

(xe,−xf ) (xe, 0)

w3 w2

w1

e

f

The sign depends on whether we move
with (+) or against (−) e’s direction. Now
consider following another edge f incident
to w2, ending at w3. Then w3 has differ-
ence (±xe ± xf , 0) or (±xe,±xf ) from
w1, depending on whether f is a straight
extension of e, or a left or right turn is made
from e to f . (Note that at a singular node “straight” is not well-
defined, but this case will not be of interest in the following).

Because the motorcycle graph forms a subdivision of the param-
eter space into axis-aligned convex cells, there exists a weakly-
u-monotone or weakly-v-monotone path between every pair of
nodes [Dumitrescu et al. 2013]. Weakly-u/v-monotone means that
the u/v-coordinate of the difference never decreases (or never in-
creases) as we follow the path from node to node. For our case
(being only interested in P 0) this implies that it suffices to consider
paths along which one of the two coordinates of the accumulated
parametric difference always stays zero.

We exploit this when exploring the paths of P 0 using a breadth-
first graph search: paths which started, e.g., with moving along a

i

j ku-edge with its direction are
never extended by walking
along u-edges against their di-
rection. Due to the monotony
property, we can stop at nodes
where both coordinates be-
come non-zero. Furthermore,
if one of the coordinates is
non-zero at a node, it is not
necessary to move along edges
which bring it even further away from zero, unless there is no other
edge to choose. In this way the search is restricted to the edges in
the P 0 region. The inset illustrates the P 0-region (grey) of singular-
ity i and two exemplary paths (red and blue) potentially followed,
reaching singularities j and k with difference (0, 0).

We perform this search from each singularity. If in any case a sin-
gularity is reached with zero parametric distance, we conclude that
the quantization is invalid. Otherwise, it is valid.

It is not easy to derive a tight asymptotic complexity bound for
this algorithm. O(n2) is easy to show, because the graph search
is in class O(n) and executed n times. In the case of all xe being
positive, the complexity is O(n). In the case of all xe being zero
it is O(n) as well (the first search already provides the answer).
Empirical observations indicate an overall linear behavior also for
in-between cases.



5.3 Differential Parameter System

As T is not a minimal graph, there are certain interdependencies be-
tween the associated differential parameters, i.e. certain consistency
conditions must be met. For each cell of T we have the consistency
conditions that the parametric lengths of the edges on opposite sides
S0 and S2 as well as S1 and S3 sum up to the same value, i.e.

∑

e∈S0

xe =
∑

e′∈S2

xe′ ,
∑

e∈S1

xe =
∑

e′∈S3

xe′ . (4)

These equations form an underdetermined, homogeneous linear
Diophantine equation system E (two rows per cell, one column per
edge of T ) of the general form

Ax = 0, xi ∈ Z ≥ 0. (5)

Any solution to this equation system is a consistent complete quan-
tization (a consistent assignment of integer values to all discrete
variables, our differential parameters x). In general, finding the
nontrivial solutions, even without consideration of conditions re-
garding validity and the optimization objective, is an NP-complete
problem [Tomás and Filgueiras 1997]. Fortunately our system has
certain specific properties (its coefficients are from {−1, 0, 1} only,
each column contains exactly two non-zeroes – or one, if bound-
aries are present, cf. Section 9) which we will exploit in the follow-
ing to overcome this. The geometric T-mesh-based interpretation
of the system will prove to be very helpful to develop an intuitive
understanding of the involved concepts and algorithms.

Obviously, the trivial quantization x = 0 is a solution to this sys-
tem, but we are clearly not interested in this one (besides being
implausible, it is invalid). One can show that every T-mesh per-
mits a solution x 6= 0 (cf. Appendix A.1). Furthermore one can
show that every T-mesh whose edges lie on separatrices of a seam-
less parametrization (like our motorcycle graph T , by construction)
permits a solution where every xi > 0 (cf. Appendix A.2). The
existence of one such solution of course implies the existence of in-
finitely many solutions (e.g. integer multiples of this solution). Of
all solutions we are interested in the ones which are valid and allow
for quantized parametrizations which are good with respect to the
objective E. We will thus let the unquantized minimizer of E guide
the solution finding process described in the following section.

6 Quantization

We are interested in a consistent quantization which in addition
is valid. Being consistent means obeying (5). The space of so-
lutions to (5) is a monoid; each solution (i.e. each consistent
complete quantization) x can be written as a linear combination
x = a1v1 + · · · + amvm, with non-negative integer coefficients
ai ∈ Z≥0, of a (unique) set of generating vectors (also called ex-
tremal rays or Hilbert basis) {v0, . . . , vm} [Rockafellar 1970]. Be-
cause in general the monoid is not free, the number m of generating
vectors can be exponential in the dimension of the system [Tomás
and Filgueiras 1997].

Even though our equation systems do have a restricted structure,
experiments revealed that the number of generating vectors often is
so large that they could not even be kept in main memory. Corre-
spondigly, their computation [Nožička et al. 1974; Schilling et al.
2000] is very time consuming for anything but the simplest models.

6.1 Algorithm Overview

To avoid these problems, we follow the strategy of constructing
individual generating vectors vi on demand and adjusting their co-
efficients ai in the linear combination, transforming one consistent
complete quantization into another.

This raises a number of questions: which quantization to start with,
which vi to construct next (and how), how to adjust ai then? And
how to do this such that the final quantization is guaranteed to be
valid, and close to the unquantized minimizer of E?

We start with the trivial solution, i.e. ai = 0, ∀i, implying a con-
sistent complete quantization σ0 – which, however, is invalid and
of bad quality. Considering that validity is a hard constraint and
parametrization quality a soft goal, we then follow a two-stage ap-
proach giving validity the appropriate priority:

• Stage I: Iteratively transform the invalid complete σ0 into a
valid complete quantization σj .

• Stage II: Iteratively transform the valid complete σj into a
valid complete quantization σk with better quality.

In both stages we confine all transformations to the space of con-
sistent complete quantizations. Furthermore, in the second stage
we restrict all transformations to the space of valid quantizations,
thereby guaranteeing a valid result.

Note that in order to stay within the space of consistent quantiza-
tions, we cannot simply alter the value of one variable to transform
one quantization into another one: the smallest possible differences
between two consistent quantizations are the generating vectors!

We proceed in a greedy, edge-centric manner: we select the T-mesh
edge e whose current value is (in a yet to be defined sense) worst
and construct a generating vector with vi[e] 6= 0, such that a change
of the coefficient ai by 1, corresponding to addition or subtraction
of vi to/from the current quantization, affects x[e].

6.2 Constructing Generating Vectors

To be as flexible as possible, we would like to make small steps,
i.e. changes as small as possible. This means we would like to
construct a generating vector v with v[e] = 1, changing x[e] in
the smallest possible increment. Changing x[e] requires changes to
other variables to keep consistency; technically, v needs to lie in
A’s nullspace. To achieve this, we project v (with v[e] = 1, and
0 in all other components) into A’s nullspace, with the constraint
v[e] 6= 0 (we will later see that v[e] = 1 is a too strong constraint;
v[e] = 2 must also be permitted for certain circumstances).

We incrementally perform this projection as follows. There are two
rows, ri, rj , in A with ri[e] = ±1 and rj [e]± 1, for all other rows
r[e] = 0. This means the entries i and j of Av with v[e] = 1 (and
0 otherwise) do not vanish. This can be remedied: let’s consider
row ri with (w.l.o.g.) ri[e] = 1; there is at least one other edge
f with ri[f ] = −1. If we additionally increase v[f ] by 1, the i-
th entry of Av vanishes again. But there is one other row k with
rk[f ] = ±1, so now Av[k] 6= 0. This process can be repeated.
If at some point we reach row j, we have constructed a vector v
with Av = 0. If the cycle we made through the matrix is simple

Figure 6: Directed graph D within a single cell of T-mesh T with
several T-junctions. On the left only the vertical arcs are shown
for clarity, in the middle the horizontal arcs, and on the right the
complete set of arcs. Generating vectors of T ’s constraint system
(5) correspond to elementary circuits of this graph D.
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Figure 5: Quantizations obtained after stage I and stage II for two different quantization scales (i.e. target edge lengths), depicted by quad
meshes extracted from the quantized parametrization. Note that the result of stage I is guaranteed to be valid, thus implies a regular integral
parametrization. While valid, it is partially too coarse, partially too fine, and generally quite “twisted”. This is due to all xe being strictly
positive after stage I. This is well remedied in the final result of stage II.

(i.e. cannot be decomposed into multiple cycles) v is a generating
vector, otherwise it is the sum of multiple generating vectors.

For illustration, it is useful to consider a geometric interpretation of
the generating vectors. We can build a directed graph D based on
the T-mesh T which models the above iteration through matrix A.
Its construction for one cell of T is shown in Figure 6. Following an
arc in this graph corresponds to moving to an entry of opposite sign
in the same row, and moving across a node to a next arc corresponds
to moving to the one other row containing a non-zero at a specific
position. Therefore there is a direct correspondence between the
generating vectors of (5) and the elementary circuits (cyclic simple
directed arc paths) of D [Johnson 1975]. To be precise, there are
two oppositely oriented circuits corresponding to one generating
vector. This is due to the existence of two D-nodes per T -edge with
oppositely oriented incident arcs – which is necessary because in
the above algorithm a row of A can likewise be used in two different
“directions” (from 1 to −1 or from −1 to 1).

Note that the process is non-deterministic: in each row of A there
can be multiple entries of opposite sign and one can be chosen ar-
bitrarily. In the graph D this corresponds to the choice of one of
the outgoing arcs of a node. This raises a question: is there always
at least one choice that leads back to row j, terminating the proce-
dure? Or put in terms of D: is there a circuit through each node?
This can be answered positively. It is a direct consequence of the
positive solution existence proof (cf. A.2).

Note that due to the non-determinism, the number of elementary
circuits through a T -edge (D-node) e can be exponential in n. We
use dynamic programming to select and construct a good one of
these in quasilinear time. To this end we assign weights to the edges
of T (the nodes of D) and find a cycle with minimum total weight.
Note that this amounts to a simple Dijkstra-type algorithm.

Weights The weights w should reflect how much we would like
an edge of T to keep its current x-value. This depends on the edge’s
ideal length xideal. This length we read from the initial continuous
parametrization (the minimizer of E) computed for the motorcy-
cle graph construction. We generally use positive weights so as
to favor small generating vectors v which perform only little over-
all change. We use a three-tier weighting scheme, distinguishing
between edges which are currently shorter than their ideal value,
edges which are about ideal, and edges which are currently larger
than their ideal value. Furthermore we use a different set of weights
depending on whether we intend to add (w+) or subtract (w−) the
vector v. In the case of addition, let d+(e) = xideal(e) − x(e), in
the case of subtraction d−(e) = x(e)− xideal(e). Then define:

w±(e) =











1/(d±(e) + 1) if 1 ≤ d±(e)

η/(d±(e) + 1) if 0 ≤ d±(e) < 1

η2(1− d±(e)) if d±(e) < 0

where η is the number of edges of T , i.e. we give strict preference to
edges which even after the addition of v remain shorter than ideal
(case 1, w ∈ (0, 1

2
]) over edges which become longer than ideal

(case 2, w ∈( 1
2
, 1]η) over edges which already are longer than ideal

(case 3, w ∈ (1,∞)η2). We override w−(e) = ∞ if x(e) = 0.
The choice of η accomplishes that edges of a higher tier are only
considered if no cycle in the lower tier edges exists.

Result The result is a vector v whose entries are from {0, 1, 2} –
in terms of D: a circuit which crosses each edge of T zero, one, or
two times. An entry of 2 can arise when both (oppositely directed)
nodes on one T -edge are used by the circuit. Assume a node would
have been used multiple times; then the circuit would not be simple,
i.e. be decomposable into multiple circuits – with a lower weight
each, so the circuit is not weight-optimal, i.e. not constructed by
our algorithm. Hence, entries > 2 do not occur (and even 2 is rare).

6.3 Greedy Edge Selection

To successfully perform stage I of our algorithm, we can proceed as
follows: as long as there is an edge e with x(e) = 0, construct and
add a generating vector v with v[e] = 1 (or 2). This trivially leads
to a valid quantization, as all differential parameters x are positive
upon termination. We process edges in order of increasing weight,
i.e. in each step we choose e = argmine|x(e)=0 w+(e). Note that
one could stop the first stage as soon as the quantization is valid, i.e.
not all x need to become positive. The additionally required validity
check, however, makes this option slightly slower on average.

For stage II we determine the edges e+ = argmine w+(e) and
e− = argmine w−(e). If w+(e+) < w−(e−) we determine a gen-
erating vector v+ with v+[e+] 6= 0, otherwise v− with v−[e−] 6= 0.
We then tentatively add/subtract this vector and evaluate whether
this operation (A) preserves validity and (B) improves the overall
situation. (A) is decided using the algorithm described in Sec-
tion 5.2. (B) is measured as the sum of squared relative differ-
ences between actual value and ideal value over all edges of T :
∑

e
(x(e)/xideal(e) − 1)2. If the assessment is positive, the addi-

tion/subtraction is performed. Otherwise we try the edge with the
second smallest weight, and so forth, until an improvement can be
made. Afterwards, again the edge with the smallest weight is de-
termined and this process is iterated. We terminate when no edge’s
generating vector can provide any improvement anymore. Figure 5
illustrates the outcome of stage I and stage II on an example model.



7 Parametrization

For the initial seamless parametrization (3) we make use of a com-
mon field-guided objective [Bommes et al. 2009]. We add regu-
larity constraints [Bommes et al. 2013b], thus a solver supporting
(linear) inequality constraints is required. We use IPOPT for our
examples. Note that in our setting there are no integer variables,
i.e. the rather complex mixed integer techniques presented in these
papers are not needed – only the basic objective and the constraints.

Once a valid complete quantization σ is determined, for the final
parametrization we strive to optimize (3) subject to σ. We do this by
adding linear equality constraints to the above optimization prob-
lem, imposing the quantization:

For a path p in T between two vertices i and j, the differential
parameters can be collected to obtain the desired distance (x, y)
between i and j. A constraint (ui, vi) = τ(uj , vj) + (x, y) is then
formulated, where τ is the accumulated transition (with variable
translation) collected along the path (from all mesh edges crossed
by p). In order to set up a minimal, i.e. linearly independent, set of
constraints, we compute a spanning tree of the singularities in T and
a system of loops of T [Colin de Verdière and Lazarus 2005]. This
yields a set of paths for which the above equality constraints are set
up. This gives a constraint system C({(u, v)}, {(s, t)}) = b, or
short: Cz = b (collecting all u, v, s, t variables in the vector z).

Solving (3) subject to these constraints then yields the regular quan-
tized parametrization – allowing, for instance, for the extraction
of a consistent quad mesh (cf. Figure 5, right) [Ebke et al. 2013].
Optionally, postprocessing steps, e.g. for the geometric improve-
ment of the irregular vertices’ positions, either based on the final
parametrization [Campen and Kobbelt 2014b] or on the extracted
quad mesh [Zhang et al. 2009], could be applied afterwards.

7.1 Robustness

The quantizations obtained by our approach appropriately sepa-
rate singularities in parameter space by construction. While in
general this property might not be sufficient for validity, specifi-
cally for those quantizations we construct based on the motorcycle
graph, feasibility (possibly subject to input mesh refinement) is eas-
ily shown constructively [Myles et al. 2014].

In practice, the triangle mesh discretization and the convexifica-
tion of parametrization regularity constraints [Bommes et al. 2013b;
Lipman 2012] however, can still sometimes lead to infeasibility.
These constraints are conservatively made convex based on a refer-
ence pose, and exclude not only irregular parametrizations, but any
parametrization deviating too much from the reference.

Improving upon [Bommes et al. 2013b], where an a priori fixed reg-
ularity constraint linearization is employed, we found it very help-
ful to perform a dynamic re-linearization for the final parametriza-
tion. To this end, initially we do not impose Cz = b as a hard
constraint, but add the energy term λ(Cz − b)2 (with a large value
λ) to the minimization objective, thereby not affecting feasibility.

Conceptually, this does not fix the singularities to specific (poten-
tially infeasible) parametric positions, but pulls them there as close
as possible while obeying the (linearized) regularity constraints. If
for the solution z′ we find ‖Cz′ − b‖∞ > ε, we re-linearize the
constraints as described by Bommes et al. [2013b] (based on the
new reference pose provided by z′), and re-solve. This is iterated
until ‖Cz′ − b‖∞ ≤ ε (which is not strictly guaranteed to occur),
and then a final solve with constraints Cz = b is performed. With
λ = 106 and ε = 10−4 this succeeded even for highly distorted
results like the intermediate states of stage I shown in Figure 5.

7.1.1 Guarantees

While the above re-linearization strategy proved to perform well in
our experiments, we note that there is no guarantee that this dy-
namic re-linearization always leads to a feasible parametrization
problem – in theory, the initial, unquantized parametrization prob-
lem could already be infeasible.

Very recently a method for continuous seamless global parametriza-
tion with success guarantee was presented [Myles et al. 2014]. As
our method is oblivious to and independent of the source of the ini-
tial parametrization, this method can of course be used to obtain the
initial parametrization for the T-mesh construction in Section 5.1.

To obtain strict guarantees for the final parametrization step, the
topological partition simplification described by Myles et al. [2014]
can be employed to remove zero-cells from the T-mesh resulting
from our algorithm in Section 6. Afterwards each cell can individ-
ually be parameterized regularly, in the simplest case using Tutte’s
barycentric mapping [Tutte 1963], instead of following Section 7.

8 Results

We applied our quantization strategy (quantized global
parametrization, QGP) to continuous seamless parametriza-
tions computed using part of the pipeline described by Bommes
et al. [2009] (cross field construction followed by continuous
parametrization, but no integer rounding) with tri-sector based
regularity constraints [Bommes et al. 2013b]. In order to evaluate
its performance, in terms of run time and result quality, we compare
to the one previous quantization approach which is robust, i.e.
IGM [Bommes et al. 2013b].

IGM makes use of a generic branch-and-bound based mixed inte-
ger solver like CPLEX or Gurobi (we use the latter). Such solvers
allow for the specification of a time limit for optimization, after
which the best solution found so far (if any) is returned. Making
use of this possibility in the context at hand is mandatory, because
waiting for the optimum to be found and confirmed is often infeasi-
ble (hours, days, . . . ). Note that such time limits can be imposed on
our method, too, because in stage II we always have a valid quanti-
zation to be returned at any time.

In Figure 7 we demonstrate what quality can be expected from both
algorithms after what run time. We only consider the quantization
phase for comparison here, because initial steps like continuous
parametrization, and final steps like constrained parametrization,
mesh extraction, mesh optimization, etc., do not differ between both
methods (and depend on mesh complexity rather than singularity
count). In the case of IGM it can take quite long until a first valid
solution is found; we indicate the time at which a solution is found
using a “[” in this figure. Times at which an algorithm finally ter-
minated are indicated by “]”.

Generally, valid results are obtained very quickly with QGP, even
for complex models with a large number n of singularities. The
result quality then quickly improves with increasing run time. Ob-
taining similar results with IGM requires allotting a much longer
run time. For complex examples with many integer degrees of free-
dom even after several hours no result, which we could compare to,
can be delivered by IGM.

With this increased performance, the time needed for initial and
final parametrization now dominates the overall run time, putting
a bound on the maximum performance improvement that can be
achieved by our method when considering the big picture. It thus
seems desirable that future research be focused on finding more
efficient approaches to these constrained parametrization problems.



Figure 7: Quad meshes extracted from integral parametrizations quantized by our QGP (blue) and IGM (green) [Bommes et al. 2013b]. Run
times are specified next to the models. “[” indicates a time where the first valid result is found. “]” indicates a time where the algorithm
terminates, delivering the (greedy) optimum. A green cross means IGM could not produce any result even after 3 hours of run time.



9 Generalization

So far we considered smooth surfaces without boundary. In the
following we extend the described algorithms to handle surfaces
with boundary, and piecewise smooth surfaces with feature curves
– both cases of practical relevance. Most concepts extend quite
easily, but some details must be taken care of.

9.1 Feature Curves

If the surface contains prominent feature curves, it is usually ex-
pected from a quantized parametrization to align integer isolines
to these curves. To this end one can add constraints to the initial
and final parametrization problem, forcing all the vertices along a
curve to have a common u- or v-parameter (subject to transitions)
[Bommes et al. 2009]. We need to make sure that the quantization
does not contradict these constraints by forcing two singularities on
a common feature curve to have different u- and v-parameters. To
this end one lets the motorcycles first trace out the feature curves.
If there is a feature curve not containing any singularity, virtual
(valence 4) singularities are added on the end points to emit mo-
torcycles. Only after this the remaining motorcycles are traced. In
this way all feature curves are present in T as edges, avoiding any
contradictions.

Note that the fact that singularities (or virtual singularities) lie on
the feature curve already implies that its corresponding isoline will
be integral. What, however, needs to be taken care of additionally,
is that a feature edge and a singularity not on the feature edge must
not collapse in parameter space – analogous to two singularities that
must not have zero distance. This is easily integrated into the valid-
ity check (cf. Section 5.2): invalidity is not only reported when an-
other singularity node is reached with zero distance, but also when
any point on a feature edge is reached with zero distance. Figure 8
shows an example model with numerous feature curves handled in
this way.

9.2 Boundaries

When the surface has boundaries, they can be taken into account
as feature curves as described above. In this way parametrization
and motorcycle graph are aligned with the boundary. Then, the
only modification that needs to be made to our quantization algo-
rithm is due to the following difference: in addition to generating
vectors which correspond to cycles in the graph D, there will be
generating vectors which correspond to paths in D which run from
a node without any incoming arc to a node without any outgoing
arc (i.e. boundary nodes, on T -edges along the boundary, which
are adjacent to only one cell). These can easily be included in our
algorithm described in Section 6.2 by performing a bidirectional
Dijkstra-type algorithm (one search with, one against the arc di-
rections) until both fronts hit each other (forming a cycle) or hit
boundary nodes (forming a path). Figure 8 shows example quad
meshes of models with boundary generated in this manner.

In the (practically less relevant) problem setting without alignment
to the boundaries, additional precaution would have to be taken:
while on a surface without boundary, or with aligned boundary, the
motorcycle graph is guaranteed to be connected (and, because each
cell is of disc topology, the cell decomposition that the graph de-
scribes even homotopy equivalent to the underlying surface [Epp-
stein et al. 2008]), this does not generally hold when unaligned
boundaries are present. Additional isoline segments may then be
added as edges to T so as to remedy this. We leave to future work
determining the simplest or most efficient way of selecting these
additional edges for use cases that require unaligned parametriza-
tions.

Figure 8: Quad meshes from integral parametrizations with align-
ment to feature curves and boundaries (red). By construction the
depicted motorcycle graphs (black) include all feature and bound-
ary curves. Notice how, when aiming for coarser quantizations, the
quads remain small where necessary to prevent interior singulari-
ties and features or boundaries from collapsing parametrically.

10 Discussion & Future Work

As laid out in Section 5, the use of T-mesh based differential pa-
rameters is the key to our algorithm’s efficiency. This choice of
oriented graph structure, just like the oriented spacer constraints of
Bommes et al. [2013b], excludes certain quantizations – intuitively
those where close singularities change their relative order in param-
eter space compared to the non-quantized parametrization. Note
that, while the spacer constraints already predetermine in which di-
rection (u or v) close singularities are separated in parameter space,
in our setting this is still open, providing additional flexibility.

We use a greedy strategy in order to yield a polynomial time ap-
proximation algorithm for an NP-hard problem. This choice was
made because the exponential worst case complexity of the robust
previous approach [Bommes et al. 2013b] can be a significant ob-
stacle in practical applications. As demonstrated in Section 8 the
performance of the algorithm in terms of run time and result qual-
ity provides clear practical advantages. Nevertheless, it could be
of interest to investigate ways to explore the space of generating
vectors and quantizations in a non-greedy fashion in future work,
perhaps even to provably optimal results.

In a somewhat different problem setting, actually not making sure
that singularities are separated in parameter space, but merging
them on the surface when the quantization forces them to collapse
in parameter space, can be a strategy of interest. A number of non-
trivial issues would have to be addressed for this. For instance, cer-
tain singularities cannot technically be merged, because they would



result in a singularity of an index too low or too high to be repre-
sentable in a linear parametrization or to be valid for meshing pur-
poses. Furthermore, depending on the application no or not every
change to the singularity layout may be admissible.

10.1 Interval Assignment

The subproblem of assigning non-negative integers to the edges of a
T-mesh in a consistent manner is related to the so-called structured
interval assignment problem, a classical problem in mesh genera-
tion [Tam and Armstrong 1993; Mitchell 2000]. There is a fun-
damental difference, though: in this interval assignment problem
positive intervals are required, while we need non-negative integers
(subject to validity constraints), and this possibility of zero-edges
is essential for the result quality (e.g. in Figure 5 left, in the final
result after stage II 99 of the 432 edges of the underlying T-mesh
are zero-edges, while the intermediate result of stage I has no zero-
edges). Approaches to positive interval assignment described in the
literature are thus not applicable to our problem.

Applying our quantization algorithm from Section 6 to the interval
assignment problem, however, is possible with a simple change:
forbid the subtraction of a generating vector if it would decrease the
parametric length of any edge below 1 (and setting w−(e) = ∞ if
x(e) = 1). We make no claim about the relative performance for
this use case here though, as it is out of the scope of this paper. The
adapted algorithm could, however, be a relatively lightweight robust
alternative to non-robust algorithms (not guaranteeing positivity)
that are sometimes applied in the Computer Graphics field in this
context [Tong et al. 2006; Bommes et al. 2008].

Finally, we note that a quad layout is a special case of a T-mesh
(no T-junctions). In this case, any non-determinism vanishes from
the generating vector construction. Each edge is affected by only
one generating vector, i.e. these vectors (corresponding to the quad
layout’s dual cycles) are orthogonal. Hence, coefficients are effec-
tively chosen individually per cycle of quads, no interdependencies
need to be considered, and processing order does not matter.

11 Conclusion

We analyzed the complications involved in transitioning from
seamless to integral global parametrizations, which are essential,
for instance, in the field of mesh generation. This process of quanti-
zation comes with a number of combinatorial and topological issues
which need to be addressed for robustness reasons. We showed that
by formulating the problem in alternative degrees of freedom based
on a convex decomposition of the parameter space, it is possible
to derive a relatively simple algorithm which performs the quan-
tization efficiently. It is based on navigating in the solution space
of a system of consistency conditions while strictly avoiding con-
figurations leading to infeasibility of the quantized parametrization
problem. The quantizations generated are thus guaranteed to induce
correct integral parametrizations, and we demonstrated the advan-
tages over previous approaches.
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KÄLBERER, F., NIESER, M., AND POLTHIER, K. 2007. Quad-
cover - surface parameterization using branched coverings. Com-
puter Graphics Forum 26, 3, 375–384.

KHODAKOVSKY, A., LITKE, N., AND SCHRÖDER, P. 2003. Glob-
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A Appendix

A.1 Non-Trivial Solution

As every node of graph D (cf. Section 6.2) has an outgoing arc, D
contains an infinite path. As the set of arcs is finite it must be cyclic,
i.e. there is at least one circuit in D, thus a non-trivial generating
vector, providing a non-trivial solution to (5).

A.2 Positive Solution

Let L be the set of the parametric lengths li > 0 of all graph
edges, measured in the underlying parametrization. Assume the
parametrization is represented by rational numbers, i.e. (u, v) ∈
Q × Q (which holds trivially in any numerical implementation).
Then every separatrix has a rational parametric position, and, as all
edges are isolines (i.e. axis-aligned in parameter space) and start
and end at separatrices, li is simply the difference of rational num-
bers. Therefore the lowest common denominator q of L exists and
scaling the parametrization by q results in a set of positive integral
edge lengths, providing a positive solution to (5).

Note that this specific solution is mainly of theoretical interest – the
edge lengths can be very large integers.


