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Abstract

We introduce a fully automatic algorithm which optimizes the high-level structure of a given quadrilateral mesh
to achieve a coarser quadrangular base complex. Such a topological optimization is highly desirable, since state-
of-the-art quadrangulation techniques lead to meshes which have an appropriate singularity distribution and an
anisotropic element alignment, but usually they are still far away from the high-level structure which is typical
for carefully designed meshes manually created by specialists and used e.g. in animation or simulation. In this
paper we show that the quality of the high-level structure is negatively affected by helical configurations within
the quadrilateral mesh. Consequently we present an algorithm which detects helices and is able to remove most of
them by applying a novel grid preserving simplification operator (GP-operator) which is guaranteed to maintain
an all-quadrilateral mesh. Additionally it preserves the given singularity distribution and in particular does not
introduce new singularities. For each helix we construct a directed graph in which cycles through the start vertex
encode operations to remove the corresponding helix. Therefore a simple graph search algorithm can be performed
iteratively to remove as many helices as possible and thus improve the high-level structure in a greedy fashion. We
demonstrate the usefulness of our automatic structure optimization technique by showing several examples with
varying complexity.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Hierarchy and geometric transformations, Curve, surface, solid, and object representations

1. Introduction

For more sophisticated geometric modeling and processing
applications like, e.g., CAD/CAM and numerical simula-
tion, quad meshes are often preferred over triangle meshes.
However, the generation and handling of quad meshes is
significantly more difficult due to the anisotropic nature of
quadrilaterals. While for high quality triangle meshes it is
usually sufficient to have a fairly regular vertex distribution,
good quad meshes have additional orientation and consis-
tency constraints to satisfy.

In fact the optimization of quad meshes is an inherently
global problem since local changes in the mesh structure
usually propagate globally across the mesh. This is not the
case for triangle meshes where mesh optimization can be
performed based on local operations.

Recently strong methods for the generation of quad
meshes have been proposed which yield meshes with good
orientation and alignment properties. However, while the re-
sulting meshes are looking quite pleasing at the first glance,

(a) (b) (c)

Figure 1: Comparing different structural quality: (a) A
completely unstructured mesh with bad quads and a dense
base-complex (in red). (b) Appropriate singularities and ori-
ented quads improve the mesh, but due to a quad-loop wind-
ing down the cylinder the base-complex is still dense. (c)
While preserving singularities and orientations, the base-
complex is optimized and topologically equivalent to a cube

a more careful analysis of their global structure reveals that
they still do not exhibit a patch layout as it is known from
meshes emerging from 3D modeling systems. In practice
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such a clean patch layout is highly desirable to support stan-
dard operations like e.g. texturing, NURBS fitting or adap-
tive sizing.

The major reason for this imperfection is that mesh sin-
gularities are usually placed based on geometric considera-
tions but otherwise fairly independently from each other. An
important consequence of this is that geodesically neighbor-
ing singularities are not properly connected to form a nicely
shaped patch layout which would correspond to a coarse
base complex. The most noticeable phenomenon where the
lack of consistency in the global structure can be observed,
is the occurrence of helical configurations (see Figure 1(b) ).

In this paper we are proposing an algorithm that takes
such an automatically generated quad mesh as input and con-
verts it into a quad mesh with improved global structure.
This improvement is entirely based on an optimization of
the discrete graph structure of the mesh and not on the con-
tinuous optimization of the geometric embedding.

In particular, we are presenting a very general operator
which changes the quad mesh structure without affecting the
number and distribution of singularities and without intro-
ducing non-quad faces. Nevertheless the operator is flexible
enough to significantly modify the global structure of the
quad mesh.

Based on this operator we develop a simple greedy pro-
cedure to effectively remove helical configurations from the
input mesh and thus improve the global structure.

1.1. Related work

Quad-remeshing techniques have a long tradition within
the graphics community and nice surveys exist [AUGA05].
Early works tried to generate oriented quadrilateral ele-
ments by explicitly tracing lines along the principal cur-
vature directions [ACSD∗03, MK04], resulting in quad-
dominant meshes. More recent parametrization based tech-
niques are very successful in generating curvature ori-
ented all-quadrilateral meshes [RLL∗06, KNP07, HZM∗08,
BZK09, ZHLB10]. They are able to automatically find ad-
equate singularity positions, e.g. by non-linearly smooth-
ing the cross field induced by the principal curvature direc-
tions [KNP07], optimizing a non-linear objective function
[RLL∗06, HZM∗08, ZHLB10] or solving a mixed-integer
problem [BZK09]. Typically these methods can generate
quadrilateral meshes with a nice angle and edge-length dis-
tribution as well as adequate singularities. However, the
quality of the induced base-complex is often not sufficient,
motivating our base-complex optimization technique. All in-
put meshes used in our paper were generated with methods
from this class.

Instead of using the principal curvature directions as
a guiding, another class of algorithms directly exploits
a base-complex with specified topology to generate all-
quadrilateral meshes via a global parametrization. Here

the base-complex is constructed manually [TACSD06,
BVK08] or derived automatically from a Morse-Smale com-
plex [DBG∗06]. However, automatically constructing high-
quality base-complexes comparable to manually designed
ones is still an open problem.

Recently the generation of feature-aligned T-meshes was
studied [MPKZ10]. Although completely different tech-
niques are used to generate a different mesh type, this work
has similar intentions as ours. Instead of removing helices,
Myles et al. try to align singularities directly within the
parametrization to simplify the base-complex. We found that
automatically choosing singularity pairs for alignment often
is complicated or even ambiguous and can lead to contradict-
ing conditions. However, since misaligned singularities lead
to helical structures within the quadrangulation, we concen-
trated on removing them instead and thus implicitly align
appropriate pairs of singularities without the necessity to re-
solve the ambiguities.

Quad mesh decimation techniques transform a high-
complexity quadrilateral mesh into a low complexity one by
incrementally applying a set of discrete operators.

Stimulated by the work of Daniels et al. [DSSC08] dif-
ferent operators and objective functions were developed,
which e.g. interleave poly-chord collapse and quadrilateral
collapse [DSSC08] (a.k.a. quadclose [Kin97] or quad-vertex
merge [DSC09a]), use only localized operations [DSC09a],
apply ring collapses [SDW∗10] or maximize homeometry
through an extended set of local operators combined with
tangential smoothing [TPC∗10].

The above methods have proven to be very useful in im-
proving unstructured quadrilateral meshes, convert triangle
meshes in quadrilateral meshes with good individual ele-
ment quality or even building level of detail hierarchies
[DSC09b]. However they are not designed to work on struc-
tured quadrilateral meshes with singularities placed by a
global optimization method. The inherent problem is that de-
spite the global poly-chord collapse, all of those local oper-
ators introduce singularities when applied on a regular grid.
Consequently for highly structured inputs the optimization
driven by the local operators gets stuck in local minima leav-
ing singularities at unexpected positions, instead of the de-
sired behavior of generating adequate chains of operations
to preserve the original singularities.

Although the base-complex corresponds to a simplified
version of the input quad mesh, we do not address the quad
mesh decimation problem. Our main goal is to simplify the
base complex as a means to global structure optimization
not necessarily the quad mesh itself. For this task different
operators are necessary which are designed to preserve the
regular grid structure without introducing additional singu-
larities.
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2. Structure Optimization

2.1. Definitions

A quadrilateral mesh M = (V,E,Q) is a set of vertices vi ∈
V embedded in R3 with adjacency information encoded as
edges E and quadrilaterals Q.

A vertex vi is called regular if it has valence 4 otherwise
it is a singular vertex. Topologically a regular vertex is the
crossing of two coordinate lines in a 2D Cartesian grid and
therefore we can easily build a right-handed local coordinate
system at such a vertex by cyclically labeling the adjacent
edges in counter-clockwise order with u, v, −u and −v as
depicted in Figure 2. However, notice that such a labeling
is only possible within a singularity-free local region since
e.g. walking counter-clockwise around a valence 3 singular-
ity would mean that a formerly labeled u edge becomes a v
edge contradicting with the initial label.

Figure 2: Each regular vertex induces a natural coordinate
system by counter-clockwise labeling the outgoing edges
with u,v,−u,−v. Parametric lines, as shown in red and green
can be extended until they end in a singularity (red point).

A parametric line is generated by tracing a local coor-
dinate direction through regular vertices or more formally
a connected sequence of edges, such that two subsequent
edges ei and e j are always connected through a regular ver-
tex where both edges belong to the same local parametric
direction, i.e. they are either {u,−u} or {v,−v} (see Figure
2). Finally a regular parametric loop is a closed parametric
line where all traversed vertices are regular.

We will also use the common notion of the dual mesh
Md = (V d ,Ed ,Qd) where an isomorphism identifies each
dual vertex with the centroid of a primal face, each dual edge
with a primal edge rotated counter-clockwise by π

2 , each
dual face with a primal vertex and the adjacency informa-
tion is automatically inherited from the primal mesh by the
above isomorphism. An important property of the dual of
a quadrilateral mesh is that all vertices are regular (valence
4). This property is the reason why using dual parametric
lines instead of primal ones is advantageous. For each pri-
mal parametric line we can always identify two parallel dual

parametric lines, while the contrary is not always true due
to the fact that primal parametric lines end at singularities.
Consequently, using dual parametric lines or dual paramet-
ric loops, which are quad-loops in the primal meshes and
called poly-chords in [DSSC08], increase the set of candi-
dates for our grid preserving operator (see Section 2.3).

2.2. The Base Complex

In the following sections we will propose an algorithm to im-
prove the base complex B(M) = (V,E ,Q) of a given quadri-
lateral mesh which is also a quadrilateral mesh with V ⊂ V .
The base complex is the union of all parametric lines which
start and end at singular vertices. Figure 1 shows three dif-
ferent quadrilateral meshes, where the base complex is high-
lighted in red. An inverse way of constructing the base com-
plex is to iteratively remove all regular parametric loops.
Each of these steps corresponds to the merging of neighbor-
ing quad-loops. This modification obviously preserves the
quadrangular structure of the input, which proves that the
base complex of a quadrilateral mesh is guaranteed to be a
quadrilateral mesh as well.

Providing a high-quality quadrilateral mesh with a coarse
base complex is of great interest, since a coarse base com-
plex induces a simple patch layout which is desired for e.g.
fitting of NURBS-patches or as a base mesh for subdivision.
In general, computing quadrangulations which provide on
the one hand a nice stretch distribution in terms of angles
and anisotropic edge lengths and on the other hand a coarse
base complex is an unsolved problem. Parametrization based
techniques usually lead to nicer stretch distributions due to
well adapted singularities and edge orientations, but unfor-
tunately they often posses a rather fine base complex. On the
contrary decimation based algorithms are able to generate
coarse base complexes, however, this benefit usually comes
at the cost of inappropriate placed singularities or edge ori-
entations, inducing high stretch distributions in a finer sub-
division.

Our strategy is to start with a quadrangulation already
equipped with appropriate singularities and a nice stretch
distribution and then try to improve the base complex as
much as possible while keeping the singularities fix. Notice
that apart from the base complex there is no other straight-
forward coarse quadrangulation with the same singularities
as in the input mesh. Due to the global topological restric-
tions we cannot define a concept analogous to the Delaunay
triangulation to achieve a coarse quadrangulation of the sin-
gularities.

In the next section we will propose a novel operator which
is fundamental for our base complex optimization, since
it offers a new class of global operations which preserve
quadrilaterals and are optionally able to preserve singular-
ities.
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Figure 3: The three atomic operations of a dual half-edge:
A shift left step (red arrow) releases the vertex on the left
side of the dual half-edge and shifts it towards the next ver-
tex, generating a triangle and a pentagon. In a collapse step
(yellow) the edge is collapsed into a single vertex. The shift
right (green) is the counterpart of shift left, releasing the
right vertex. After applying one step we move to the next
dual halfedge as indicated by the arrows.

2.3. Grid-Preserving Operators

Changing the local connectivity within a quadrilateral mesh
without introducing non-quadrilateral elements or new sin-
gularities is a delicate task. And even worse, no local oper-
ation exists to perform such a modification. However, since
such an operation is highly desirable, it is worth to examine
the problem in more detail.

Assume that we have a closed quadrilat-
eral mesh without boundaries and that we
want to change the connectivity within a
single quadrilateral with points a, b, c and
d such that a is connected to c instead of b,
as depicted in the figure to the right.

The problem is that after executing this
edge-flip, we end up with a triangle and a pentagon. If the
corresponding quad-loop is self-intersection free, one solu-
tion would be to propagate the edge-flip along the whole (al-
ways closed) quad-loop such that in the end the triangle and
the pentagon will cancel out. Unfortunately not all quad-
loops are intersection free and even if they are, this com-
bined operation is completely determined by the quad-loop
structure and leaves no freedom to control which areas of the
mesh should preferably be modified. This property is in con-
flict with the requirement to protect parts of the mesh which
contain important features or regions of good quality.

To obtain more degrees of freedom we propose to com-
bine the above edge-flip operation with a collapse operation
in such a way, that we can create a much larger variety of
possible operators, but still can guarantee to preserve the
quadrangular structure of the input mesh. Figure 3 shows the
three necessary atomic operations, namely shift left, collapse

Figure 4: The finite-automaton describes all valid possi-
bilities to combine the three atomic operations. Each closed
dual path on the mesh, which is closed within the the finite-
automaton preserves the all-quadrilateral structure without
introducing new singularities.

and shift right which are visualized with a red, yellow and
green arrow respectively. All three operations can be asso-
ciated with a dual halfedge and combined along a dual path
in the way shown in the finite automaton in Figure 4 in or-
der to form a valid grid-preserving operator (GP-operator).
The most important property of such a GP-operator is that
it does not introduce new singularities or non-quadrilateral
elements.

This means, if we start at one mesh edge in the step left
state we can do as many shift left steps as we want by fol-
lowing the dual path in the same direction where all crossed
edges are shifted. To leave the step left state, within a face
we can turn right and change the state to step straight. From
here we can either move straight and collapse as many edges
as desired, or turn right and apply the shift right operator, or
again turn left and apply the shift left operator. Altogether,
using this state machine, we can traverse a dual path which is
assembled of straight steps, sidesteps to the left and sidesteps
to the right, but we can never step back, i.e. turn twice into
the same direction (cp. Figure 5).

Figure 5: Example of a valid dual path combining the three
atomic operations according to the state machine. In the ab-
sence of singularities the resulting topology is equivalent to
the removal of a single column of quads (cp. last step).

While this might seem to be quite restrictive it fortunately
is not. The reason is that we can exploit the singularities
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(a) (b)

Figure 6: (a) Side steps (dashed lines) can control the walk-
ing direction by navigating between singularities. (b) The
dual path through the green quadrilaterals, consisting of
collapse steps (yellow) and shift right steps (green), is a valid
GP-operator (left). Executing the corresponding atomic op-
erations results in a new quadrilateral mesh with the same
singularities (right). Notice that the GP-operator has closed
the red quad-loop.

within the mesh to change the walking direction, e.g. walk-
ing around two valence three singularities is the same as
turning by an angle of π in a regular grid. Consequently, nav-
igating between and around the singularities offers a large
variety of possible paths. Figure 6 (a) gives an example of
this behavior.

To guarantee that in the end all triangles and pentagons
cancel out, it is necessary that the dual path is closed within
the state machine, meaning that there is a transition from
the state at the last dual half-edge to the state at the first dual
half-edge. Notice that this is exactly the case when the closed
dual path circuits a group of singularities such that the total
rotation becomes an integer multiple of 2π. For illustration,
Figure 6 (b) shows such a path and the resulting quadrangu-
lation after applying the corresponding operations.

Going back to our introductory question, we are now able
to give a more satisfying answer. If we want to shift the edge
between a and b to an edge between a and c while maintain-
ing a quadrangulation without additional singularities, we
can start at the edge between a and b with the state shift
right and walk along any closed dual path compatible to the
state machine and perform the induced atomic operations.
Which one of those candidate operations is the best strongly
depends on the application in mind.

A natural choice is to minimize the overhead, i.e. the num-
ber of additional atomic operations which are necessary to
close the path. This can be found by enumerating all pos-
sible paths generated by the state-machine with increasing
length until the shortest cycle is found. Obviously this ap-
proach leads to an exponential complexity which is useless
for practical applications.

The state-machine graph: In order to efficiently find a cy-
cle which is compatible to the state machine, we first as-
semble a directed graph, as depicted in Figure 7 (a). In this
graph all cycles are compatible with the state-machine by

(a) (b)

Figure 7: (a) Illustration of the state-machine graph: By cre-
ating three vertices for each dual half edge we can encode
the different states shift left (red), collapse (yellow) and shift
right (green). Adding directed edges corresponding to tran-
sitions within the finite-state automaton we obtain a graph
where all paths that belong to chains of operations are com-
patible with the finite-state automaton by construction. (b)
The upper part of the figure shows a valid while the lower
one depicts an invalid crossing configuration.

construction. The idea is that the graph possesses three dif-
ferent vertices for each dual halfedge of the quadrilateral
mesh which encode the three different states. Adding di-
rected edges which reproduce the transitions of the state
machine as illustrated in Figure 7 (a) we achieve a directed
graph with the desired property. All cycles in this graph cor-
respond to dual paths on the quadrilateral mesh which are
closed within the mesh as well as in the state machine.

In this graph a shortest cycle through a start vertex can be
found by a simple and efficient breadth-first search. However
there is one drawback compared to the explicit exponential
algorithm of the state-machine. Since the graph is static, it
does not capture the changes made by previous operations
of the same path. Clearly we cannot shift an edge which was
already collapsed, although such a path exists in the graph.
Therefore we have to do a post-evaluation of the cycle in
order to check whether it belongs to a realizable set of op-
erations or not. If it is not realizable, we iteratively modify
the graph and perform new searches, until we have found a
valid cycle or the algorithm terminates without finding one.
In contrast to the breadth-first search the iterative process
cannot guarantee to find a shortest path. However, as our
practical experiments showed, it is at least a good compro-
mise between quality and performance.

Illegal configurations within a cycle are typically induced
by a corresponding dual path on the quadrilateral mesh that
visits a face more than once, e.g. by performing more than
one operation on a single edge or first shifting an edge and
then performing any other operation while walking through
the face. The only two exceptions where it is allowed to visit
a face twice are first collapsing through a face in two orthog-
onal directions and second collapsing through a face in one
direction and then shifting through the face in the orthogonal
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direction. In both cases the static graph structure still leads
to valid paths.

If an illegal cycle is found, we first identify the first illegal
configuration where a face is visited twice, leading to a pair
of graph vertices vi and v j, which are in conflict by visiting
vi first. To modify the graph, we remove all graph vertices
and adjacent edges which are incompatible for the path up
to vertex vi and then restart the search from vi.

Feature and singularity preservation: A nice property of
the graph representation is that we can exclude all unwanted
atomic operations by simply removing the corresponding
graph vertex and all its adjacent edges from the graph. This
is for example useful to disallow the merging of neighboring
singularities or the shifting of feature edges.

Moreover it is possible to disallow the merging of sin-
gularities which are not directly connected. Such a merging
could possibly happen if the breadth-first search leads to a
cycle which collapses several edges connecting two singu-
larities. Of course we do not want to forbid the collapse of all
edges between the singularities. Therefore such illegal con-
figurations are identified in the post-evaluation phase and as
before we restart the search with a modified graph, where
the last collapse leading to the illegal merge was removed.
The same procedure can be used to prevent that two distinct
feature lines collapse into one.

Using GP-operators: In summary the concept of a GP-
operator offers a variety of different structural modifications,
which by construction do not introduce new singularities
or non-quadrilateral elements. Notice that the well-known
poly-chord collapse used in [DSSC08] is one special case of
a GP-operator which only consists of edge collapses.

Here we suggested to extend a desired local operation to
a full GP-operator by the minimal number of additional op-
erations. However, depending on the desired structural op-
timization many other choices are conceivable, leading to
other graph search algorithms like e.g. a Dijkstra or Hamil-
tonian cycle.

A nice feature of the graph based construction is the flex-
ibility to optionally guarantee the preservation of singulari-
ties and/or (sharp) features of the input quadrangulation by
just removing some of the graph vertices.

In the following sections we will use GP-operators to im-
prove the quality of the base complex by identifying and re-
pairing helical mesh configurations.

2.4. Topological Helices in Quadrilateral Meshes

The most intuitive way to think of topological helices in
quadrilateral meshes, which we will call q-helices, is, to
imagine their construction out of a rectangular part of the
Cartesian grid as illustrated in Figure 8 (b). First start creat-
ing a cylinder in the usual way, by keeping one side of the

regular

helicalpitch 1

(a) (b)

Figure 8: (a) A left-handed helix winds up the blue axis.
(b) By wrapping a rectangular quad-patch and and glueing
two sides, we can create a cylinder. Shifting the sides against
each other before glueing, we end up with a topological q-
helix equipped with the same properties as in the continuous
case.

rectangle fixed in space, wrapping the opposite side of the
rectangle around the first one and glueing together pairs of
boundary vertices which belong to equal parametric lines.

If we instead connect vertices from different parametric
lines of the rectangle, we are able to create a single new
parametric line, which winds upwards or downwards in the
grid with a constant orthogonal offset. Hence, we have con-
structed a discrete helical structure. In this structure we can
identify all the properties of a usual helix. The pitch h of the
helix is is the distance between two neighboring windings,
while the turn length τ is the arc length of a single turn. For a
q-helix both values are integers, since all distances are mea-
sured in the grid-metric of the quadrangular mesh, which
means that all edges (and dual edges) have a length of one.
The winding number γ which counts the number of turns can
be computed by dividing the total length l by the length of
one turn γ = l/τ.

The orientation of a helix is reflected in the sign of the
pitch. Following the right hand grip rule, a right-handed he-
lix has a positive pitch, while the pitch of a left-handed helix
is negative. Notice that the handedness of a helix is an intrin-
sic geometric property and does not depend on the chosen
coordinate system.

After describing the construction of q-helices, in the next
paragraph we will derive a criterion which can be used to
identify q-helices in quadrangular meshes. Some example
helices are shown in Figure 9.

As discussed in the previous section, we want to work
with helices of the dual mesh. More precisely a q-helix Hd =
[ed

0 , . . . ,e
d
n ] with pitch h ∈ Z, turn length τ ∈ Z and winding

number γ ∈ R is an ordered set of connected dual edges ed
i

forming a dual parametric line and fulfilling the following
q-helix property:

Within a q-helix it is equivalent to either walk τ steps
along the helix or alternatively do h side-steps to the left.
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Figure 9: Exemplarily some q-helices are shown as col-
ored dual parametric lines. Notice that q-helices with a pitch
greater than 1 often form bundles of interleaved helices.

Here equivalent means that not only the position but also the
orientation coincides.

Mathematically the above statement implies that there is
a regular region without interior singularities around Hd ,
where it is possible to choose a consistent frame. Conse-
quently q-helices cannot have any self-intersections.

For our mesh optimization task not all helices which ful-
fill the above definition are of interest. Therefore it is useful
to define the interesting subset to be so called minimal q-
helices. They are characterized through two properties: For
a minimal q-helix the pitch h is always smaller or equal to the
turn length τ and secondly there is no subset of dual edges
belonging to the q-helix, which form a separate q-helix with
smaller pitch. The first criterion excludes approximately half
of all q-helices, because for each q-helix there exists an or-
thogonal q-helix living in the same regular region, where the
values of pitch and turn length are exchanged. The second
criterion excludes helices which contain other helices with
smaller pitch, not well suited for our optimization.

As illustrated in the introductory example in Figure 1,
q-helices subdivide the base-complex into narrow stripes.
Therefore in the next section we will discuss how to remove
them from the quadrilateral mesh.

2.5. Removing q-helices

To remove a q-helix we can apply exactly the inverse op-
eration of the construction example of Figure 8 (b), which
means cutting the mesh along the helix, shifting the vertices
of one side of the cut, and glueing them with their new part-
ners. However, on a closed mesh the situation is a little bit
more complicated. In order to preserve the quad-structure we
have to compute a full GP-operator, as introduced in Section
2.3, where the desired shifting operations are a sub-part of
the complete operation. Furthermore we have to make sure
that no other shifting of horizontal edges within the cylindri-
cal mesh area of picture Figure 8 (b) are done by the GP-
operator. Since the graph construction of the GP-operator
does not allow multiple operations on a single edge, we re-

pair helices with pitch > 1 iteratively by applying the follow-
ing algorithm.

Removing a q-helix H with pitch 1 can be done in four
steps.

1. Set up the graph G representing the state-machine for the
input quadrilateral mesh.

2. Identify an open dual path D = [d0, . . . ,dm] consisting of
shift steps which are necessary to remove the helix.

3. Remove all vertices from G which correspond to shift op-
erations which are in conflict with the correction of D, i.e.
all shifting steps of horizontal edges in the cylindrical re-
gion which do not belong to D.

4. Execute the iterative path search described in Section 2.3
from vertex dm to vertex d0 in G to extend D to a GP-
operator. If such an operator exists, perform the induced
atomic operations. Otherwise it was not possible to re-
move H.

In general we have different possibilities to choose the
correction path D. Each possibility is a column of quadri-
laterals within the cylindrical region. We randomly choose
one of those candidates and only in cases where we do not
find a path, we iteratively test the other ones.

3. Algorithm

Given the above GP-operator to remove a single q-helix, it is
straightforward to design a greedy algorithm which removes
as many q-helices as possible.

An important side condition within this algorithm is that
we forbid all operations which worsen mesh areas which
have a nice topological structure. More precisely we identify
all dual edge-loops without self-intersections, i.e. all mini-
mal q-helices with pitch 0, and only search for GP-operators
which do not destroy them by shifting a neighboring paral-
lel edge. Furthermore we disallow increasing the pitch of all
present q-helices with a winding number greater or equal 2.
This somehow arbitrary choice is justified by the observa-
tion that helices with at least two complete windings most
likely increase the base-complex quality and therefore it is
often advantageous to protected them from worsening. Both
modifications can easily be done by removing graph vertices
as explained in section 2.3.

Altogether our base-complex optimizing greedy algorithm
works in the following way (cp. Figure 10):

1. Identify all minimal q-helices {Hi} within the input
quadrilateral mesh.

2. Greedily remove the helix with the largest winding num-
ber with the algorithm explained in Section 2.5.

3. Apply smoothing to reduce the geometric distortion in-
troduced by shift steps.

4. Go back to step 1. until there is no removable q-helix left.

A naive search for q-helices would first check for all dual
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(a) (b) (c) (d) (e) (f)

Figure 10: Algorithm example: Figure (a) shows the input mesh with a fine base-complex. Two q-helices (blue and yellow
curve) are identified in (b) and the correction path shown in (c) and belonging to the blue helix is extended to a GP-operator in
(d). Figure (e) shows the mesh after applying all induced atomic operations. This single operation is sufficient to remove both
helices leading to the desired (coarse) base complex. Finally tangential smoothing improves the per element quality (f).

vertices whether their orthogonal dual parametric lines inter-
sect each other. If this is the case, the first intersection is a
q-helix candidate and we can verify whether the necessary
conditions of Section 2.4 are fulfilled and extend the q-helix
in both directions as far as possible. By precomputing for
each dual half-edge the corresponding parametric line, a lo-
cal position index on this line and the next self-intersection
on this parametric line, the detection of q-helices becomes
much faster.

For the smoothing we apply a very simple explicit vari-
ant of [ZBX05] as done in [DSSC08] which is able to han-
dle features appropriately. In general it would be possible to
leave this step out, however shift operations will locally cre-
ate unaesthetic angles. Therefore if not only the topological
result is of interest, a tangential relaxation is preferable.

4. Results

For the evaluation of our base-complex optimization tech-
nique, we apply the method to several quadrilateral meshes
generated with the method of [BZK09]. As a quantitative
evaluation we compare the number of helices and the quality
of the base-complex of the input mesh against the optimized
mesh as shown in Table 1. The quality of the base-complex
is measured by the number of its quadrilateral patches , i.e.
the number of quadrilaterals that remain after removing all
regular parametric lines. All results were computed within a
few minutes on a standard PC.

For all meshes most of the q-helices could be removed
leading to a significant reduction of the base-complex size.
On the FANDISK model the optimization method reduces
the size of the base-complex from 408 to 144 quadrilater-
als. Furthermore we experimentally collapsed all face-loops
that did not lead to singularity merges or collapsing features.
In this experiment the base complex could be even reduced
to 90 quadrilaterals, as shown in the right most picture of the
FANDISK in Figure 11. However, this reduction comes at the
cost of moving the valence five singularity onto the feature

Input Output
Model #Hel #F #F in BC #Hel #F #F in BC

FANDISK 19 764 408 5 506 144
DRILLHOLE 24 3077 1368 7 1948 216

ROCKERARM 17 3180 1226 3 1678 178
FERTILITY 46 3357 2271 1 2387 526

BOTIJO 42 8395 4957 7 5472 1034
LEVER 49 7886 5578 10 5850 907

JET 52 36472 23303 23 31296 1492

Table 1: Statistics of the base-complex optimization: We
compare the number of helices # Hel, the number of quadri-
laterals of the mesh # F and the number of quadrilaterals of
the base-complex # BC between the input and the optimized
mesh of several models.

line on top of the FANDISK which is not optimal and induces
unwanted stretch.

Another additional experiment was performed on the
FERTILITY model, where the right most picture in Figure 11
shows the result of a base-complex optimization where the
merging of singularities was allowed. Here the size of the
base-complex could be reduced from 526 to 222 but again
the overall distortion of the patches increased as a result
of the merged singularities. Whether such aggressive reduc-
tions are useful depends strongly on the desired application.

The BOTIJO and the LEVER model both have a larger
number of singularities leading to rather many separating
lines despite the removal of most of the helices. But still the
decoupling of quad-loops is advantageous for many appli-
cations enabling for example a better control of anisotropic
edge-lengths.

Limitations. The presented algorithm works in a greedy
fashion and therefore it is no surprise that we cannot guar-
antee optimality. Due to the iterative graph search it is even
not guaranteed to find a suitable GP-operator if one exists.
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Figure 11: Comparison of various example meshes before and after our base-complex optimization. The red lines indicate
the base-complex, i.e. all parameter lines emanating from the singular vertices. For the FANDISK model the third result is a
maximal reduction of quadloops without merging singularities, while the third picture of FERTILITY was created by allowing
singularity merges within the helix removal step.
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Our experiments showed that prioritizing the q-helices by
their winding-number usually leads to good results, but we
also experienced counter examples where a different order-
ing performed better.

Furthermore the resulting base-complex is strongly de-
pendent on the number and placement of singularities in the
input, since we do not change them. In particular for un-
structured quadrilateral meshes like the cylinder in Figure 1
(a) it cannot be expected to achieve a coarser base-complex
without adequately adjusting the singularities.

While the topological optimization is completely ro-
bust and parameter free, the mesh smoothing may occa-
sionally lead to geometric instabilities. Replacing the ex-
plicit smoothing by a superior parametrization based method
which e.g. exploits the optimized base-complex could be an
interesting research topic for the future.

5. Conclusion

We have presented a fully automatic method which opti-
mizes the base-complex of a given quadrilateral mesh by
greedily removing helical structures without destroying reg-
ular parts. Removing a single helix is done by applying the
proposed GP-operators, which combine atomic operations
in order to perform edge flips without introducing new sin-
gularities or non-quadrilateral elements. Finding such a GP-
operator is equivalent to a graph search problem.

We believe that the concept of a GP-operator has much
more potential than just removing helical structures and may
stimulate further work in this area. Interesting extensions in-
clude different graph search algorithms and GP-operators for
the alignment of singularities.
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