
HexEx: Robust Hexahedral Mesh Extraction

Max Lyon∗

RWTH Aachen

David Bommes∗

RWTH Aachen

Leif Kobbelt∗

RWTH Aachen

(a) (b) (c) (d) (e) (f)

Figure 1: Given the tetrahedral mesh CYLINDER as input in (a), the frame-field in (b) induces the singularity graph in (c). Note that having
four valence-three singularities pass through the cylinder is a common way of parametrizing a cylindrical mesh. Unfortunately, the two left
singularity curves meet at a common vertex (marked by a circle) in the middle of the cylinder, forcing both edge strips onto the same integer
line in parametric space. This causes the parameter image of the many tetrahedra shown in (d) to degenerate (blue) or flip (red). While
these imperfections of the parametrization are a difficult problem for naive mesh extraction algorithms, our algorithm is able to extract the
sensible all-hexahedral mesh in (e). The singularity graph in (f) shows that the two singular valence-three curves were merged into a single
valence-two curve.

Abstract

State-of-the-art hex meshing algorithms consist of three steps:
Frame-field design, parametrization generation, and mesh extrac-
tion. However, while the first two steps are usually discussed in
detail, the last step is often not well studied. In this paper, we fully
concentrate on reliable mesh extraction.

Parametrization methods employ computationally expensive coun-
termeasures to avoid mapping input tetrahedra to degenerate
or flipped tetrahedra in the parameter domain because such a
parametrization does not define a proper hexahedral mesh. Nev-
ertheless, there is no known technique that can guarantee the com-
plete absence of such artifacts.

We tackle this problem from the other side by developing a mesh
extraction algorithm which is extremely robust against typical im-
perfections in the parametrization. First, a sanitization process
cleans up numerical inconsistencies of the parameter values caused
by limited precision solvers and floating-point number representa-
tion. On the sanitized parametrization, we extract vertices and so-
called darts based on intersections of the integer grid with the para-
metric image of the tetrahedral mesh. The darts are reliably inter-
connected by tracing within the parametrization and thus define the
topology of the hexahedral mesh. In a postprocessing step, we let
certain pairs of darts cancel each other, counteracting the effect of
flipped regions of the parametrization. With this strategy, our algo-
rithm is able to robustly extract hexahedral meshes from imperfect
parametrizations which previously would have been considered de-
fective. The algorithm will be published as an open source library
[Lyon et al. 2016].

Keywords: hex meshing, parametrization, mesh extraction

Concepts: •Applied computing → Computer-aided design;
•Computing methodologies → Shape modeling; Physical simu-
lation;

∗e-mail:{lyon,bommes,kobbelt}@cs.rwth-aachen.de

Permission to make digital or hard copies of all or part of this work for per-

sonal or classroom use is granted without fee provided that copies are not

1 Introduction

High-quality meshes are of great interest for various kinds of sim-
ulations. Finite element methods, for example, solve complicated
problems such as partial differential equations (PDE) by discretiz-
ing a volume into a mesh consisting of many small cells. Since they
are easy to generate, these cells are often tetrahedra. Hexahedral
meshes, however, are better suited for these tasks since they typ-
ically require only 10–25% the number of elements of tetrahedral
meshes to achieve the same accuracy [Shepherd and Johnson 2008].
They are suitable for a multilevel hierarchy of nested meshes which
can enhance the speed and accuracy of PDE solvers significantly
[Nieser et al. 2011].

Unfortunately, the generation of these meshes takes up a lot of time.
Shimada [2006] reports that only 20% of the total time spent on
modeling and simulation techniques is used for analysis, while set-
ting up the problem takes up 80%. While the generation of tetra-
hedral meshes may only take hours or days, designing a hexahedral
mesh can take several months [Shepherd and Johnson 2008] be-
cause they are often still constructed by hand to ensure the correct
alignment to the current problem.

Recent developments, e. g. by Nieser et al. [2011] or Li et al.
[2012], prove parametrization-based hex meshing algorithms to be
a promising approach for automated hex mesh generation from
given tetrahedral meshes. The general structure of these techniques
consists of three steps [Nieser et al. 2011]:

1. Design of a guiding frame-field

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than the author(s) must be honored. Abstract-

ing with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org. c© 2016 Copyright

held by the owner/author(s). Publication rights licensed to ACM.

SIGGRAPH ’16 Technical Papers, July 24 - 28, 2016, Anaheim, CA

ISBN: 978-1-4503-4279-7/16/07

DOI: http://dx.doi.org/10.1145/2897824.2925976

http://dx.doi.org/10.1145/2897824.2925976

2. Generation of a parametrization which aligns to that field

3. Extraction of the hexahedral mesh from the parametrization

While the first two steps are discussed in detail, most publications
only mention the third step briefly. We show that, in practice, the
extraction step is not trivial since parametrizations usually contain
numerical inaccuracies and flipped elements. These imperfections
cause simple extraction algorithms to generate inconsistent hexa-
hedral meshes containing non-hex elements or entirely missing el-
ements.

With HexEx, we provide a robust algorithm that is able to extract
an all-hex mesh, even from a defective input parametrization. It
consists of the following four phases:

1. Preprocessing: Transition functions are extracted and the
parametrization is made numerically consistent.

2. Geometry extraction: Still containing flipped elements, the
sanitized parametrization is used to extract vertices represent-
ing the output geometry.

3. Topology extraction: Topological information is extracted by
interconnecting previously generated darts.

4. Postprocessing: Topological inconsistencies caused by de-
generacies of the parametrization are resolved.

1.1 Related Work

With CubeCover Nieser et al. [2011] presented a first approach for
automatic generation of hexahedral meshes using frame-fields to
align the individual hexahedra. For their algorithm, the user de-
signs a coarse hexahedral mesh which covers the whole tetrahedral
input mesh. From this coarse mesh a frame is calculated for each
tetrahedron. The parametrization that aligns the tetrahedra as well
as possible to these frames is obtained by minimizing the energy

E(f) =

∫

V

||∇f −X||2dvol ,

where X is the frame-field, V is the set of all tetrahedra and f
are piecewise linear functions mapping each tetrahedron into the
parameter domain R

3.

Li et al. [2012] propose a method for the automatic generation of
guiding frame-fields. After the frame-field generation, a series of
operations, such as edge collapses and tetrahedron splits is applied
to obtain a singularity-restricted field. Nieser et al. [2011] define 24
types of singularities, 14 of which inevitably lead to zero volume
tetrahedra in the parametrization. The singularity-restricted field
only contains the 10 types of singularities that do not. However,
flipped elements may still be present and need to be handled during
mesh extraction. With our extraction algorithm, these mesh editing
operations are not necessary, as it is able to robustly extract all-hex
meshes even in the presence of degenerate tetrahedra.

Jiang et al. [2014] follow a similar approach as Li et al. For a
given frame-field they present further operations to transform the
parametrization. One example is moving a singularity that runs
along two edges of a triangle to the other edge of that triangle,
which prevents the degeneration of the triangle in the parameter
domain that would have been caused by forcing the two edges to
run along the same integer iso-line. Due to the robustness of our
algorithm towards degenerate cells, it is not necessary to explicitly
remove singular edge configurations that cause small regions of the
parametrization to degenerate.

With QEx, Ebke et al. [2013] presented an algorithm to robustly
extract quadrilateral meshes from an imperfect parametrization of

the triangular input mesh. Like our algorithm, QEx applies a san-
itization step to get rid of numerical errors in the parametrization,
allowing the use of exact predicates for robustness in the follow-
ing steps. In order to convert non-quad elements, initially extracted
due to flips in the parametrization, QEx relies on a vertex merging
procedure which merges vertices based on their local parameter.
Unfortunately, since QEx only merges vertices with equal parame-
ter coordinate on a per face basis, it is not able to reliably extract a
quad mesh if larger areas are flipped, such that whole quads lie in
the flipped region. Our more global iterative post processing proce-
dure is able to handle such cases by letting flipped and non-flipped
regions cancel each other out.

1.2 Contribution

Our two main contributions are a robust hexahedral mesh extraction
algorithm which is able to handle most typical kinds of degenera-
cies in the input parametrization and an open source C++ reference
implementation of our algorithm [Lyon et al. 2016].

2 Terminology

2.1 Mesh

A combinatorial 3-dimensional polytopal complex is a mesh that
consists of a set of conforming d-polytopes, 0 ≤ d ≤ 3, with under-
lying incidence and adjacency relations [Kremer et al. 2012]. The
0-, 1-, 2- and 3-dimensional polytopes are called vertices, edges,
faces and cells, respectively. For d > 0, each d-dimensional poly-
tope is bounded by (d−1)-polytopes. Two polytopes are considered
incident if one of them is entirely part of the others boundary. Two
d-dimensional polytopes are called adjacent if they share a com-
mon (d− 1)-polytope on their boundary. Two vertices are adjacent
if they are incident to a common edge.

A mesh is then given as M = (V,E, F,C) where V , E, F and
C denote the set of vertices, edges, faces and cells, respectively. In
contrast to combinatorial polytopal complexes where vertices are
abstract entities, vertices in a geometric polytopal complex have
a geometric embedding, i. e. a function g : V → R

n [Kremer
et al. 2012]. In our case n = 3. For a shorter notation, we use
italic letters (typically p, q, r, s) for vertices and bold face letters
(p, q, r, s) for their geometric embedding .

We identify an edge e ∈ E by the two incident vertices, e. g. e =
(p, q). Analogously, we identify a face f = (p1, p2, ..., pk) by a
sequence of vertices, where f is the face bounded by edges ei =
(pi, pi+1) and ek = (pk, p1), for 0 < i < k.

A tetrahedral mesh consists entirely of tetrahedral cells, i. e. cells
bounded by four triangular faces. A tetrahedral cell is also called
tetrahedron or short tet. A tet c = (p, q, r, s) ∈ C is bounded by the
four faces that each are incident to three of the vertices. As a con-
vention, the vertices of the tet are ordered such that the determinant
det

(

q− p r− p s− p
)

is positive.

A mesh is a 3-manifold (with boundary) if every point is either
locally homeomorphic to a sphere or a half sphere [Kremer et al.
2012]. The former are called inner, the latter boundary points. We
require as input such a 3-manifold tetrahedral mesh.

2.2 Parametrization

In analogy to Ebke et al. [2013] and Bommes et al. [2013], a 3D
integer-grid map f is the union of linear maps fci : R3 → R

3 that
map each tet ci = (pi, qi, ri, si) ∈ M to a tet (ui, vi,wi, xi) ∈

f f
-
-1

g

(a) (b) (c)

Figure 2: (a) Input tetrahedral mesh. To allow a singular edge in
the center, the mesh is cut open along the red faces. (b) Mesh in
parametric space. (c) Output mesh defined by parametrization.

R
3×4 in the parameter domain. The parametrization of two adja-

cent tets ti and tj is related by the transition function gij . Given

a closed loop of tets (c0, c1, ..., ck, c0) around an edge e that starts
in the cell c0 incident to e and passes through all incident cells, the
edge e is defined to be singular if the accumulated transition func-
tion ge = gk0 ◦ ...◦g12 ◦g01 is not the identity [Nieser et al. 2011].
Singular vertices are defined as vertices incident to other than two
singular edges.

The 3D integer-grid map must satisfy the following constraints:

(A1) The transition functions gij mapping the chart of tet ci to the
chart of the adjacent tet cj have to be 3D grid automorphisms,
i. e. be of the form

gij(u) = Πiju + tij ,

where Πij is an element of the chiral cubical symmetry group
G, containing the 24 orientation preserving transformations
that map coordinate axes to coordinate axes [Nieser et al.
2011], and tij ∈ Z

3 is an integer translation.

(A2) Singular edges have to be mapped to segments on integer
lines, i. e.

f(p, q) =
(

Π(a, b, c)T ,Π(a, b, d)T
)

∀(p, q) ∈ Se ,

for some a, b ∈ Z, c, d ∈ R and Π ∈ G, where Se ⊆ E is
the set of singular edges inM.

(A3) Points incident to other than two singular edges have to be
mapped to integer points, i. e.

f(p) = u ∈ Z
3 ∀p ∈ Sv ,

where Sv ⊆ V is the set of singular points inM.

(A4) The image of each tet has to have a positive volume:

det(vi − ui wi − ui xi − ui) > 0 ∀ci ∈ C .

Figure 2 shows an example of a parametrization obeying these con-
straints. To allow a singular valence 3 edge in the output, the input
mesh in Figure 2a is cut open along the highlighted faces and the
central edge is mapped onto an integer grid line in Figure 2b. The
regular integer grid then induces the hexahedral mesh in Figure 2c
with the desired topology.

Computing a parametrization that satisfies Constraint (A4) is still
an open problem and can even be infeasible for a given frame-field
[Jiang et al. 2014]. Additionally, due to numerical inaccuracies with
floating-point arithmetic, Constraints (A1) to (A3) are often only
fulfilled approximately.

Therefore, we define relaxed 3D integer-grid maps in analogy
to Ebke et al. [2013] to be parametrizations that satisfy Con-
straints (A1), (A2) and (A3) approximately and disregard Con-
straint (A4) entirely.

As input for our algorithm we require a tetrahedral mesh with such
a relaxed 3D integer-grid map as parametrization.

3 Output Data Structure

The data structure used for our algorithm is based on that of Krae-
mer et al. [2014]. For a volumetric meshM = (V,E, F,C), we
store a set of vertices with a geometric embedding to describe its
geometry. The topology is defined by a generalized map which
consists of a set D of so-called darts and pointers αi interconnect-
ing the darts.

The set of darts D ⊂ V ×E × F ×C is defined as a set of tuples,
such that

D = {(v, e, f, c) : v ∼ e, e ∼ f, f ∼ c}

where ∼ means “incident to”.

For each dart d = (v, e, f, c) ∈ D, four connections are stored to
other darts, which are uniquely defined by:

α0(d) = (v′, e, f, c)

α1(d) = (v, e′, f, c)

α2(d) = (v, e, f ′, c)

α3(d) = (v, e, f, c′)

where αi(d) 6= d and αi(d) ∈ D. For boundary faces there is no
such α3(d).

(a) (b)

Figure 3: (a) Illustration of αi connections in 3D. Here, a dart
d = (v, e, f, c) is represented by the cell c where the vertex v, edge
e and face f are highlighted. (b) αi connections in 2D, where a
dart d = (v, e, f) is represented by the face f where the vertex v
and edge e are highlighted. In further illustrations, we represent d
as a small point that is closest to the corresponding entities (bottom
right). α0 connections are drawn in red, α1 in green and α2 in
blue.

In the data structure, only vertices are stored explicitly. Edges, faces
and cells are stored implicitly:

Edges are bounded by the vertices reached via only α0 pointers.
Faces are bounded by edges reached via only α0 and α1 point-
ers. Cells are bounded by faces reached via all pointers except α3

pointers. One connected component of a mesh consists of all cells
reachable using any pointers.

Note, that, while we have given the definition of darts for 3-
dimensional geometry, it is straightforward to generalize darts for
n-dimensional geometry. In particular, we get a definition in 2D
simply by omitting cells and α3 pointers. In the following, we will
often use 2D illustrations to explain concepts as they are both easier
to sketch and easier to understand.

3.1 Properties

In this section, we list some interesting properties of the data struc-
ture described above.

Given a set S ⊆ {α0, ..., α3} and a dart d, the orbit 〈S〉(d)
is defined as the set of darts reachable from d by following any
combination of αi’s in S [Kraemer et al. 2014]. As a simplified
notation, we drop the curly braces when specifying S explicitly,
e. g. 〈α0, α3〉(d) = 〈{α0, α3}〉(d).

Two adjacent faces are connected over the whole shared edge:

∀d ∈ D : ∀d′ ∈ 〈α0〉(d) : α2(d) ∈ 〈α0〉(α2(d
′)) (1)

Two adjacent cells are connected over the whole shared face:

∀d ∈ D : ∀d′ ∈ 〈α0, α1〉(d) : α3(d) ∈ 〈α0, α1〉(α3(d
′)) (2)

IfM is a hexahedral mesh, we can further formulate the following
properties which hold for all d ∈ D and :

For each dart d ∈ D:

Each face is a quad:

|〈α0, α1〉(d)| = 8 (3)

Each corner is incident to three faces:

|〈α1, α2〉(d)| = 6 (4)

Each quad strip within a cell consists of four quads

|〈α0, α1 ◦ α2 ◦ α1〉(d)| = 8 (5)

Each cell consists of six half faces:

|〈α0, α1, α2〉(d)| = 48 (6)

(a) (b) (c)

Figure 4: Illustration of properties 3 to 5. Note, the white darts
in (c) are only shown for orientation, they are not in the set
〈α0, α1 ◦ α2 ◦ α1〉(d).

4 Algorithm

Our extraction algorithm can be divided into four phases described
in the following sections. During the geometry extraction, the in-
put tetrahedra are analyzed and checked for intersections with the
integer grid points in parametric space, yielding the vertices of the
hexahedral mesh which define its geometry (Section 4.2). In a sim-
ilar fashion, we extract darts, which get connected to each other
during the topology extraction, defining the topology of the hexa-
hedral mesh (Section 4.3).

For a perfect parametrization, these two steps would already yield
the desired hexahedral mesh. However, since we aim for a robust
algorithm that is able to extract meaningful hexahedral meshes even
for imperfect parametrizations, we employ two additional steps.
The preprocessing step sanitizes the parametrization, compensat-
ing for the limited precision of numerical solvers and floating-point
numbers, and thus enforcing Constraints (A1) to (A3) (Section 4.1).
In the postprocessing phase, artifacts caused by flipped tetrahedra,
such as duplicate vertices, are corrected (Section 4.4).

4.1 Preprocessing

Our preprocessing consists of two steps. First, we extract the tran-
sition functions gij that map the parameters from the chart of ti to
the chart of tj . Then, during the sanitization step, we enforce the
exact fulfillment of Constraints (A1) to (A3). The benefit of this is
that all subsequent steps of the algorithm can employ exact pred-
icates to check geometric properties, yielding reliable results and
simplifying the implementation significantly.

4.1.1 Extracting the Transition Functions

As a first step, we extract from the parametrization the transition
functions gij(u) = Πiju + tij between all adjacent tets. Unfor-
tunately, it is impossible to recover the matching Πij if the face f
between the two tets ti and tj is degenerate. However, this is no
limitation, since most parametrization techniques fix the matchings
prior to the computations of the parametrization based on a frame-
field. We therefore consider the matchings as given. The integer
translation tij can then easily be calculated by

tij = round
(

gij(u)−Πiju
)

4.1.2 Sanitizing the Parametrization

The purpose of the sanitization is to ensure the exact fulfillment of
Constraints (A1) to (A3). While we made sure in the previous step
that the translations tij of the transition functions are exact integers,
it is still possible that for a vertex p its parameter u = fci(p) in
cell ci is not equal to the transformed parameter gji

(

fcj (p)
)

from
an incident cell cj , due to the limited precision of floating point
arithmetic.

To remedy this, we apply the same strategy as Ebke et al. [2013]:
we pick for each vertex v an arbitrary incident cell c from which we
propagate its parameter u into all other cells incident to v accord-
ing to the respective transition functions. During this procedure, we
have to ensure that Constraint (A1) is fulfilled exactly in both direc-
tions, i. e. rounding during any calculation must not occur. Round-
ing can happen when the floating-point representation of a parame-
ter in one chart needs a larger exponent than in another chart, thus
losing one significant digit in the mantissa. To prevent this, we find
the largest exponent of all parameters of v in all incident cells. The
parameter values of v in c are truncated accordingly before propa-
gation. Additionally, in order to fulfill Constraints (A2) and (A3),
we round each component of u to the closest integer if the distance
is less than the maximum precision ε of the solver that was used to
generate the parametrization.

After the sanitization, we only use exact predicates for all calcula-
tions in the following steps of the algorithm.

4.2 Geometry Extraction

Extracting the geometry of the hexahedral mesh consists mainly of
finding all its vertices and their geometric embedding as described
in the following section. We also describe the generation of darts
here as this is, like the generation of vertices, a local operation that
can be performed for each tet individually, whereas finding the con-
nection between darts as explained in Section 4.3.1 involves several
tets per dart.

4.2.1 Vertex Extraction

As already stated, each integer grid location intersecting with the
parametrization defines a vertex of the hexahedral mesh, or short
h-vertex. After the previous step, we can use exact predicates, such

as those provided by Shewchuk [1997], to reliably detect such loca-
tions. The algorithm is straightforward and analog to that of Ebke
et al. [2013]. While it would be possible to enumerate all h-vertices
by iterating over all tets and checking if an integer grid point inter-
sects the parameter image of the tet, this would also lead to a lot of
duplicate vertices, as integer grid locations intersecting a tet on the
boundary may intersect several other tets on their boundary as well.
We therefore iterate over all vertices, edges, faces and cells sepa-
rately and exclude their respective boundaries. We call the entity
intersecting with an integer grid point the generator of the h-vertex.

For each generated h-vertex, we compute a geometric embedding
according to its barycentric coordinates with respect to its genera-
tor.

4.3 Topology Extraction

The topology extraction phase of our algorithm consists of two
steps. First, we extract darts in a similar way we extracted ver-
tices, based on intersections of the integer grid with the tet mesh in
parametric space as discussed in Section 4.3.1. Then, these darts
are interconnected by carefully navigating through the input mesh
according to Section 4.3.2.

4.3.1 Dart Extraction

The parametrization implies the structure of the hexahedral mesh as
the intersection of the parameter images of the tets with the regular
grid. In Section 4.2.1, we already extracted h-vertices at intersec-
tions of integer grid points with the parameter image of the input
mesh. In this section, we take this concept further in order to ex-
tract the darts that will later define the topology of the hexahedral
mesh. We define the parametric volume Tet of a tet t with parame-
ters (u, v,w, x) as:

Tet(t) = {αu + βv + γw + (1− α− β − γ)x : 0 ≤ α, β, γ ≤ 1}
(7)

Furthermore, let z ∈ Z
3 be an integer grid point and ~d1,~d2 and ~d3

be orthonormal and restricted to the six axis directions. We then
define an integer grid edge as

E(z,~d1) =
{

z + α~d1 : 0 < α < 1
}

,

an integer grid face as

F(z,~d1,~d2) =
{

z + α~d1 + β~d2 : 0 < α, β < 1
}

,

and an integer grid cell as

C(z,~d1,~d2,~d3) =
{

z + α~d1 + β~d2 + γ~d3 : 0 < α, β, γ < 1
}

.

Note that we use < rather than ≤ to define E ,F and C in order to
exclude their boundaries.

We now extract a dart d for every vertex v, edge e, face f and cell
c of the hexahedral mesh where v ∼ e, e ∼ f and f ∼ c. Thus, we
have to find all tets t, integer grid points z, and orthonormal vectors
~d1,~d2 and ~d3 such that all the following conditions are fulfilled:

(B1) The integer grid point intersects the tet.

{z} ∩ Tet(t) 6= ∅ (8)

(B2) The integer line starting at z going into direction ~d1 intersects
the tet.

E(z,~d1) ∩ Tet(t) 6= ∅

Input: tetrahedral mesh (V,E, F,C), sanitized map f,
1: for each h-vertex h with embedding p and generator g do
2: for each tet t ∈ C incident to g do
3: z← ft(p)

4: for each orthonormal and axis aligned ~d1,~d2,~d3 do
5: if (B2) and (B3) and (B4) then
6: generate dart d = (z, E ,F , C, t)

Algorithm 1: Dart extraction

(B3) The integer plane with one side being E(z,~d1) and extending

into direction ~d2 intersects the tet.

F(z,~d1,~d2) ∩ Tet(t) 6= ∅ (9)

(B4) The integer cube with base F(z,~d1,~d2) extending into direc-

tion ~d3 intersects the tet.

C(z,~d1,~d2,~d3) ∩ Tet(t) 6= ∅ (10)

As an alternative notation for d = (v, e, f, c), we will now

use d = (z, E(z,~d1),F(z,~d1,~d2), C(z,~d1,~d2,~d3), t) or short
d = (z, E ,F , C, t) where z, E , F and C are the parameter im-
ages of v, e, f and c, respectively, in the chart of t.

Algorithm 1 describes how to extract all darts. Since we already
have extracted all vertices, we do not have to check for Condition
(B1) anymore. Instead we can iterate over all extracted h-vertices
and check for each tet that is incident to the generator of that h-
vertex if Conditions (B2) to (B4) are fulfilled. We call darts ex-
tracted for flipped tets anti darts, and refer to all others as regular
darts.

4.3.2 Connection Extraction

Having extracted the vertices and darts from the parametrization,
the mesh data structure still lacks connectivity information. In the
following step, we establish connectivity by assigning the four con-
necting darts indicated by αi for every extracted dart d. In the eas-
iest case, the other darts we want to connect d to were extracted in
the same tet as d. We can then simply look them up in the list of
darts extracted for t according to the following description. For dart

d = (z, E(z,~d1),F(z,~d1,~d2), C(z,~d1,~d2,~d3), t):

α∗

0(d) = (z + ~d1, E(z,~d1),F(z,~d1,~d2), C(z,~d1,~d2,~d3), t) ,

α∗

1(d) = (z, E(z,~d2),F(z,~d1,~d2), C(z,~d1,~d2,~d3), t) ,

α∗

2(d) = (z, E(z,~d1),F(z,~d1,~d3), C(z,~d1,~d2,~d3), t) ,

α∗

3(d) = (z, E(z,~d1),F(z,~d1,~d2), C(z,~d1,~d2,−~d3), t) .

For injective parametrizations which only contain trivial transitions
between tets, the darts can be found similarly easily. One can search
in the list of all extracted darts for a match of the above description,
ignoring the tet the dart was extracted for. However, in most real-
world examples, the parametrization will contain transitions which
have to be considered. We therefore give the following conditions
under which we connect two darts:

Two darts d = (z, E ,F , C, t) and d′ = (z′, E ′,F ′, C′, t′) are con-
nected via an αi pointer if all following conditions are fulfilled:

(C1) There exists a chain of adjacent tets {t0, ..., tn} with t0 = t
and tn = t′.

(C2) Let gj be the transition function mapping from tj to tj+1 and
gjk = gk ◦ gk−1 ◦ ... ◦ gj+1 ◦ gj for j < k.

g0n(z) = z
′

or i = 0 ,

g0n(E) = E
′

or i = 1 ,

g0n(F) = F
′

or i = 2 ,

g0n(C) = C
′

or i = 3 .

where i refers to αi, i. e. depending on the type of connection
one entity may be different.

(C3) For a face f with parameter image (u, v,w), we define analo-
gously to Equation (7)

Tri(f) = {(1− α− β)u + αv + βw : 0 ≤ α, β ≤ 1} .

Let fk be the face shared by tets tk and tk+1. Each face has
to intersect the parametric image of the three entities that are
incident to both d and d′:

g0k({z}) ∩ Tri(fk) 6= ∅ or i = 0 ,

g0k(E) ∩ Tri(fk) 6= ∅ or i = 1 ,

g0k(F) ∩ Tri(fk) 6= ∅ or i = 2 ,

g0k(C) ∩ Tri(fk) 6= ∅ or i = 3 .

To give an intuition of the meaning of the these conditions, let us
consider the α0 connection. In this case, the chain of tets fulfilling
the conditions corresponds to the result of an integer iso line tracing

starting at z in t0, going into direction ~d1, passing through faces fk
and reaching z + ~d1 in tet tn, all while considering the transition
functions. During tracing, the next tet is entered through the face
that is intersected by the integer iso line. In some cases however,
the integer iso line may intersect two faces on their common edge
or even three faces on their common vertex. For these cases, Condi-
tion (C3) provides a consistent decision which face to choose. Also,
note that when tracing the iso line and switching from a tet that is
flipped to one that is not, or vice versa, one has to change tracing di-
rection, because the new cell simply does not continue into the old
direction. In this case, the tracing stops when the start parameter z
is reached again (under consideration of the transitions).

Analogously, for the other αi, the chains correspond to a gener-
alized form of tracing. For α1, one traces rotationally within the
current face towards the other edge. For α2, one traces rotationally
around the current edge. In both cases, the direction of rotation is
uniquely defined by having to stay in the same integer grid cell. For
α3, the other dart is almost always found in the original tet, or, if a
face of the tet aligns with the integer grid face, in the neighboring
tet. If the chain contains more than two tets, all but the first and last
one are degenerate.

Algorithm 2 finds for each dart the four darts to connect to accord-
ing to the previously stated rules. Starting with a dart d, we can
easily generate the expected partner using α∗

i . If this dart was gen-
erated during the geometry extraction we can connect the two darts.
If not, we keep looking in the next adjacent tet that we reach over
the face fulfilling Condition (C3). Note that most of the times, there
are two faces that fulfill this condition. Therefore, we ignore the
face that was used to enter the current dart, as this face would bring
us back into a tet that was already checked. Should the other face
be a boundary face, we leave the dart unconnected.

When entering the next cell, we have to consider the transition func-
tion and update our dart descriptions accordingly. Also, we have
to check whether the flippedness of the tet changed. Whenever we
pass from a flipped region into a regular one, or vice versa, we swap

the descriptions of the start dart ds and target dart dt. We repeat this
process until we find the target dart, or we run into the boundary of
the input mesh.

Input: tet mesh (V,E, F,C), sanitized map f, darts D
1: for each dart d ∈ D do
2: for each i ∈ {0, 1, 2, 3} do
3: ds← d
4: de← α∗

i (ds)
5: flast ← ∅
6: s← flippedness of t
7: while de /∈ D do
8: let ds = (z, E ,F , C, t)
9: for each face f ′ of tet t with f ′ 6= flast do

10: if f ′ fulfills (C3) then
11: f ← f ′

12: if f boundary then
13: abort, leave dart d without connection

14: let g be the transition function over f
15: t← tet on other side of f
16: ds← (g(z), g(E), g(F), g(C), t)
17: de← α∗

i (ds)
18: if s 6= flippedness of t then
19: swap ds and dt
20: s← flippedness of t

21: flast ← f

22: connect dart d to dart in d′ ∈ D with d′ = de

Algorithm 2: Connection extraction

4.4 Postprocessing

For perfect parametrizations which do not contain any flipped or
degenerate tets, the algorithm has already obtained the final hex
mesh at this point. However, flipped tets can lead to several kinds
of inconsistencies.

In such cases, properties 3, 5, and 6 are not fulfilled. We observed,
however, that the following, weaker properties were fulfilled in all
our tests:

Let 〈S〉+(d) = {d ∈ 〈S〉(d) : d proper} and 〈S〉−(d) = {d ∈
〈S〉(d) : d anti}

Figure 5: Top left: Input mesh. Colors are for visual orientation.
Bottom: Parametrization. Note that the triangular area is flipped.
Top right: extracted darts and αis.

{2} {3} {4} {5} {6}{1}

(a)

{2,3} {2,3} {4,5} {4,5} {6}{1}

(b)

{2,3} {2,3} {4,5} {4,5} {6}{1}

(c)

{2,3} {2,3} {4,5} {4,5} {6}{1}

(d)

{2,3} {2,3} {4,5} {4,5} {6}{1}

(e)

{2,3} {2,3} {1,4,5} {1,4,5} {6}{1,4,5}

(f)

Figure 6: Dart annihilation process of the mesh from Figure 5. The gray dotted arrow identifies a pair of dart and anti dart that is annihilated
in the next step. The sets on the bottom track the equivalence classes of the vertices in the bottom row (cf. section 4.4.2)

For each dart d ∈ D:

|〈α0, α1〉
+(d)| − |〈α0, α1〉

−(d)| = z · 8 , (11)

|〈α1, α2〉
+(d)| − |〈α1, α2〉

−(d)| = z · 6 , (12)

|〈α0, α121〉
+(d)| − |〈α0, α121〉

−(d)| = z · 8 , (13)

|〈α0, α1, α2〉
+(d)| − |〈α0, α1, α2〉

−(d)| = z · 48 , (14)

with z ∈ Z and α121 = α1 ◦ α2 ◦ α1.

A 2D example of an extracted mesh is given in Figure 5. While
Equations (12) to (14) do not apply in 2D, the extracted mesh con-
tains faces fulfilling Equation (11) for z equal to −1 (bottom mid-
dle), 0 (left and right of bottom middle) and 1 (rest). With the
postprocessing step, we remove all anti darts and try to make the
extracted mesh fulfill Equations (11) to (14) for z = 1.

4.4.1 Dart Annihilation

The key idea of dart annihilation is that flipped regions of the
parametrization and adjacent regular regions should cancel each
other out.

Whenever we find a pair of regular dart d and anti dart d′ which are
connected via any αi, we remove these two darts after adjusting the
connections of all other darts connected to either d or d′ as follows:

αi(αi(d)) = αi(d
′) ,

αi(αi(d
′)) = αi(d)

for all i where αi(d) 6= d′.

After all pairs of regular darts and anti darts are annihilated, each
connected component consists of only proper darts or only anti
darts. In practice, the only darts left are typically regular ones. Only
if the majority of the parametrization is flipped will there be more
anti darts than regular darts. Since annihilation removes one dart
of each type, only anti darts will be left in this case. While this is
no problem for our algorithm, it is probably a sign that the input
parametrization is erroneous. For the remainder, we will assume

that only regular darts are left. Thus, |〈S〉−(d)| = 0 for any S and
d. Therefore, Equations (11) to (14) become:

|〈α0, α1〉(d)| = n · 8 , (15)

|〈α1, α2〉(d)| = n · 6 , (16)

|〈α0, α121〉(d)| = n · 8 , (17)

|〈α0, α1, α2〉(d)| = n · 48 , (18)

with n ∈ N and n > 0 since d ∈ 〈S〉(d) for any S and d.

In Figure 6, the dart annihilation process is demonstrated for the
mesh of Figure 5.

4.4.2 Vertex Merging

As the last step of our algorithm, we refine the geometric embed-
ding of the output mesh. As already mentioned above, flipped and
degenerate tets cause several vertices to be extracted for the same
integer grid point. We want to merge those vertices such that only
one representative is left which is assigned a new geometric embed-
ding based on the originally extracted vertices.

For the merging step, we first set up equivalence classes for the
vertices. Initially, each vertex is in its own class. Then, we check
for each vertex which is incident to a degenerate tet t whether a
vertex was extracted for the same integer grid location on another
face, edge or vertex of t. If so, we merge the equivalence classes of
the two vertices.

Additionally, to eliminate duplicate vertices caused by flipped tets,
we perform an additional check during the dart annihilation step.
Whenever we find a pair of dart and anti dart connected via an α0,
we merge the two equivalence classes of the vertices referenced by
the two darts.

For the final equivalence classes we create a new vertex for each
class replacing its original vertices. If all vertices are inner vertices,
we simply choose their center of gravity as the geometric embed-
ding of the newly created representative. If there are boundary ver-
tices in the equivalence class, i. e. vertices generated from a bound-
ary vertex, edge or face, we use a different strategy only considering
these vertices. For each boundary vertex, we collect all boundary

faces incident to the generating entity. We calculate a new position
as the point closest to all planes defined by these boundary faces.
Since this new position may be far off the original positions, we
chose the position of the boundary vertex of the equivalence class
which is closest to the calculated point. Thus, we ensure that the ge-
ometric embedding of the new representative lies on a meaningful
position on the input mesh’s boundary.

(a) (b) (c)

(d) (e) (f)

Figure 7: Comparison of different merging positions. (a): Input
mesh FAN PART. (b): Parametrization. Flipped tets are highlighted
in red. (c): Extracted mesh before post processing. (d)–(f): Merged
vertices positioned at center of gravity, center of gravity of bound-
ary vertices only, and closest point to all incident boundary planes.

5 Results

Figure 8: Results of HexEx for FANDISK, BLOCK and DRILLED

HOLE. Tets that are flipped (red) or degenerate (blue) in parameter
domain are highlighted.

We use our algorithm to extract hex meshes on a variety of different
meshes and parametrizations that we obtained from an implemen-
tation based on work by Nieser et al. [2011] and Ray and Sokolov
[2015] and summarize the results in this section. Some statistics
for these meshes are given in Table 1. Even though all parametriza-
tions contained imperfections, our algorithm was able to extract
meshes free of flipped hexahedra and non-hexahedral cells in most

Table 1: Statistics of example models: Number of tets in input mesh
(# T), number of tets with flipped parametrization (# Flip), number
of tets with degenerate parametrization (# Deg), number of hexa-
hedral cells in output mesh (# H), and timings (t) on an i5 CPU
@ 3.3GHz. BUNNY 1 and 2 refer to the initial and randomized
parametrizations, respectively.

Model # T # Flip # Deg # H t

CYLINDER 90371 558 376 5160 6.8s

FAN PART 4137 48 0 468 0.5s

FANDISK 75309 470 21 244 2.2s

BLOCK 38779 210 580 648 1.7s

DRILLED HOLE 17299 56 1021 11347 7.9s

SPHERE 61299 30 196 490 2.1s

TETRAHEDRON 32768 23 44 192 0.9s

TORUS 333824 7200 825 124412 99s

BUNNY 1 65766 44 28 16612 14s

BUNNY 2 65766 29286 28 16612 36s

ELK 233930 38001 9962 100706 102s

cases. Typically, a hex mesh optimization algorithm, such as that by
Livesu et al. [2015], is applied on an extracted hex mesh to optimize
its element quality. Unless stated otherwise, we did not apply any
such optimization on the extracted hex mesh and show our results
as they are produced by our algorithm.

In Figure 9, we show a common artifact also described by Jiang
et al. [2014]. Often, curves of the singularity graph passing along
the boundary occasionally sink into the inside leading to degener-
ate tets and thus cause dents in the surface of the extracted mesh.
Our vertex merging strategy creates a new vertex for the duplicated
vertices that occur in this scenario and ensures that its position lies
on the surface of the original mesh leading to a faithful boundary
approximation

When two parallel curves of the singularity graph intersect at a ver-
tex, they are forced to collapse onto each other in parametric space.
This leads to many clustered flipped tetrahedral cells between the
two curves as seen in Figures 1 and 12. Even for these complicated
cases, our algorithm extracts a meaningful mesh in which the two
singular curves are merged into a single one.

(a) (b) (c)

Figure 9: Close-up of BLOCK. Marked tets in (a) have a degen-
erate parameter image. This leads to poor boundary alignment in
(b). After merging with the h-vertices marked red, the boundary of
the output mesh aligns perfectly with that of the input mesh in (c).

5.1 Stress test

In order to test the robustness of our algorithm, we set up the follow-
ing stress test. Given the initial parametrization of BUNNY shown

(a) (b) (c) (d) (e)

Figure 10: (a) Polycube parametrization of BUNNY. (b) Resulting hex mesh. (c) Randomized parametrization constructed by moving vertex
parameters by a random value between−2 and 2 in each direction while preserving the original polycube boundary constraints. (d) Resulting
hex mesh shows a lot of distortion but the same topology as (b). (e) A few smoothing steps reveal the correct topology.

(a) (b) (c) (d)

Figure 11: (a) and (c) The singularity graph and flipped tets of
SPHERE and TETRAHEDRON. (b) and (d) The extracted all-hex
meshes.

(a) (b)

Figure 12: (a) Input mesh TORUS for which the singularity graph
and all flipped or degenerate tets are shown. (b) Our algorithm
extracted an all-hex mesh where the touching singular curves are
combined into a single twisted valence two singularity. We applied
5 iterations of setting each vertex to the center of gravity of its inci-
dent vertices to untangle the inner cells.

in Figure 10a, we perturbed each vertex parameter by a random
value between −2 and 2 in each direction while fulfilling the origi-
nal boundary conditions, i. e. boundary vertices remained either in a
plane or a line (the intersection of two planes) or a vertex (intersec-
tion of three planes). This causes about half of the tetrahedra to flip
and leads to the extraction of many more darts than for the original
parametrization. However, after the annihilation process the num-
ber of remaining darts was identical to that of the undistorted case.
Even though the geometric embedding is quite distorted due to the
randomization the extracted mesh has the correct topology as seen
in Figure 10e.

We observed the same robustness for all parametrizations without
inner singularities. This suggests that our algorithm is perfectly
suited for polycube like parametrizations [Gregson et al. 2011;
Livesu et al. 2013; Huang et al. 2014].

On meshes with inner singularities, our algorithm is not as robust
towards such random distortions. Performing the stress test on
SPHERE (Figure 11) led to the extraction of non-hex elements if the

displacement was larger than 0.4 units. We discuss these failures in
the following section.

5.2 Failure cases

Unfortunately, our algorithm is not able to handle all possible con-
figurations of flipped tetrahedra. We identified two problematic
cases.

Split vertices Further challenges appear, when Equations (15)
to (18) are not fulfilled for n = 1. This can happen when the tets
around an edge are flipped in such a way that the sum of dihedral
angles (where the dihedral angle of flipped tets is considered nega-
tive) around that edge is 2π less than originally intended. This may
change, for example, an inner valence 5 edge to a valence 1 edge.
In this case, our algorithm extracts non-hexahedral cells as shown
in Figure 13a.

(a) (b)

Figure 13: (a) Non-hexahedral cell caused by inner valence 1 edge.
(b) Reconnecting darts resolves the problem.

Ebke et al. [2013] observed the same behavior in the 2D case and
we refer to Figure 5 in their paper for an example parametrization
leading to this artifact. They call this phenomenon “lost q-ports”,
where a q-port is similar to a 2D dart, because of the 5 expected
edge intersections with the input mesh, only 1 is present, while the
others are “lost”. We note, however, that the extracted darts allow
the representation of a valid all-hex mesh by changing some of the
α pointers (cf. Figure 13b where we reconnected some pointers by
hand). Therefore, we would like to reinterpret this behavior as a
“split vertex”, where some of the darts are extracted at one place and
the rest at another. This assumption is further strengthened by the
results of the stress test. For all randomized parametrizations, the
number of darts left after annihilation was constant. We therefore
conjecture that in these cases, the darts can always be reconnected
in a way which yields a valid all-hex configuration. Finding a robust
and general reconnection strategy is an interesting topic for future
research.

Partial connectivity Currently, our algorithm does not
guarantee that Equation (1) and Equation (2) are fulfilled.
Figure 14 shows an example where a bad
parametrization of the brown and purple
boundaries leads to two faces only being
partially connected. Similar configurations
are possible in 3D and lead to partially con-
nected cells shown in the inset.

Both examples can easily be fixed. One has to find the unconnected
darts, connect them, and merge the two vertices. Unfortunately,
there are configurations which are not trivial to fix. Consider again
the example in Figure 5 but with the red area removed in both in-
put and parametrization. The initial extraction shown in Figure 15a
is similar to the original but the eight anti darts extracted for the
red area are missing. Without these darts, the annihilation process
converges with more darts left than before (Figure 15b) and leads
to a mesh with invalid connectivity, since both lower faces are par-
tially connected to the upper face. Obviously, the upper face does
not have enough darts to be fully connected to both lower faces.
Instead of trying to connect the unconnected darts, an easy way to
fulfill Equation (1) could be to disconnect the pairs of darts that
form the partial connection. However, this may be problematic for
the application using the hex mesh. Alternative solutions might in-
corporate splitting faces or cells to add more darts which then allow
to complete the partial connection.

(a) (b) (c)

Figure 14: Configuration with partial adjacency. (a) Input mesh.
(b) Parametrization. (c) Invalid output mesh.

{2} {3} {4} {5} {6}{1}

(a)

{2,3} {2,3} {4,5} {4,5} {6}{1}

(b)

Figure 15: (a) Initially extracted dart structure for input from Fig-
ure 5 with the red areas removed. (b) Darts after annihilation. Note
that both lower remaining faces are only connected via one of the
two darts of the upper edge.

Volume Collapses As already discussed earlier, undesired inter-
sections between arcs of the singularity graph force entire regions
of the mesh onto the same parameter, causing many tetrahedra to
flip or degenerate in the parametric domain. While our algorithm
often is able to handle the resulting parametrization, this is not the
case if a complete volume between two boundaries collapses. In
Figure 16, we show an example where the antlers and the back left
wheel of ELK are collapsed into a sheet and a point, respectively.
In such cases, all darts in these regions are eliminated during the

(a) (b)

Figure 16: (a) Tetrahedral input mesh ELK. Tets which are degen-
erate in the parametrization are shown in blue, flipped ones in red.
(b) Extracted mesh with some parts missing due to their complete
collapse in the parametric domain. Top boxes show an inside view
of the front wheel before (left) and after (right) smoothing.

annihilation process and no hexahedral cells remain. If, however,
only a subvolume collapses, while the boundary around it remains
on reasonable parameter locations, our algorithm is able to extract
a meaningful mesh, e. g. the front left wheel of the elk.

6 Discussion

While we cannot give any formal proofs and guarantees we empir-
ically found that our algorithm can robustly handle the following
cases.

• A “perfect” parametrization (which may contain numerical er-
rors on double precision, but no flips or degeneracies) always
leads to a valid hex mesh due to our robust tracing using exact
predicates only.

• The very common case of small regions of degenerate and
inverted tets caused by incompatible singularity types of dif-
ferent edges of the same tet as described by Li et al. [2012] or
zigzags as described by Jiang et al. [2014] are handled well
without the need of explicitly editing the singularity graph or
modifying the mesh (Figure 11). The same is true for singu-
larity curves touching the surface as described by Jiang et al.
[2014] (Figure 9).

• Polycube parametrizations, which do not contain inner sin-
gularities, succeed even when many defects are present (Fig-
ure 10).

• Larger regions of degenerate or flipped tets caused by touch-
ing curves in the singularity graph such as CYLINDER (Fig-
ure 1) or TORUS (Figure 12) are handled correctly unless one
of the following problematic cases occurs.

We identified three scenarios which prevent our algorithm from ex-
tracting a valid hex mesh.

• If the extracted data structure contains darts which satisfy
Equations (11) to (14) for a k other than −1, 0 or 1, or not
at all1, our algorithm will extract non-hex cells (Figure 13).
For these cases, we conjecture that a reconnection of darts is
always possible to form a valid all hex-mesh, and we hope
such a reconnection strategy can be found in the future.

1Figure 5c in [Ebke et al. 2013] shows such a parametrization in 2D.

• Flipped tets at the boundary may cause a partial connectiv-
ity between adjacent hexahedral cells. Often, these issues can
easily be resolved as described in 5.2. While we have artifi-
cially constructed a parametrization which does not allow an
easy fix, we have not encountered such a case in practice.

• When integer or alignment constraints induced by boundaries
and singularities force large regions of the parametrization to
invert or to collapse (cf. Figure 16), these regions will some-
times not create any hexahedra and thus leave parts of the
input model uncovered. While this behavior is suboptimal
from a meshing point of view, it is clear that the resulting
mesh is actually consistent with the parametrization. Hence,
such large collapses need to be addressed during the earlier
frame field and parametrization stages. Repairing them dur-
ing the mesh extraction phase would in general require global
changes and thus deliver a mesh that is no longer consistent
with valid parts of the parametrization.

7 Conclusion

We presented a definition for generalized maps based on tuples of
vertices, edges, faces and cells, bridging the gap between explicit
and implicit mesh data structures. This allowed us to provide an
intuitive criterion for when to extract a dart for a given parametriza-
tion and how to build the connections between those darts. Based
on these concepts, we presented a mesh extraction algorithm which
is extremely robust towards imperfections in the parametrization
such as flipped or degenerate tetrahedra. While we motivated the
algorithm in 3D, due to the n-dimensional nature of generalized
maps the presented concepts are easily transferable to 2D, as well
as to higher dimensions.

By providing a publicly available C++ implementation of HexEx
we hope to accelerate the progress of developing new parametriza-
tion algorithms by relieving researchers from one of the involved
tasks of hex meshing. Thanks to the robustness of our algorithm,
a larger set of parametrizations is now applicable to hex meshing.
It might even facilitate the development of parametrization algo-
rithms that instead of trying to prevent flipped elements purpose-
fully place them to achieve a desired effect. For example, Ebke et
al. were able to exploit the robustness of QEx to extract high qual-
ity quad-meshes from noisy input data [Ebke et al. 2014]. Similar
applications are imaginable for HexEx.

Our main goal for future research is to identify a set of constraints
that can be added on top of Constraints (A1) to (A3), yet are not as
strict as Constraint (A4), such that a valid hex mesh can be guaran-
teed by our algorithm.

Acknowledgments

This research has received funding from the European Research
Council under the European Unions Seventh Framework Pro-
gramme (ERC grant agreement 340884 “ACROSS”) and the Ger-
man Research Foundation (DFG, Gottfried-Wilhelm-Leibniz Pro-
gramm, and grant GSC 111, Aachen Institute for Advanced Study
in Computational Engineering Science). We would like to thank
Jan Möbius for creating and maintaining the geometry process-
ing framework OpenFlipper [Möbius and Kobbelt 2012], Hans-
Christian Ebke and Marcel Campen for fruitful discussions, as well
as the reviewers for their helpful feedback. Some of the models are
courtesy of the AIM@SHAPE Repository.

References

BOMMES, D., CAMPEN, M., EBKE, H.-C., ALLIEZ, P., AND

KOBBELT, L. 2013. Integer-grid maps for reliable quad mesh-
ing. ACM Transactions on Graphics 32, 4 (July).

EBKE, H.-C., BOMMES, D., CAMPEN, M., AND KOBBELT, L.
2013. QEx: Robust quad mesh extraction. ACM Transactions
on Graphics 32, 6 (Nov.).

EBKE, H.-C., CAMPEN, M., BOMMES, D., AND KOBBELT, L.
2014. Level-of-detail quad meshing. ACM Transactions on
Graphics 33, 6 (Dec.).

GREGSON, J., SHEFFER, A., AND ZHANG, E. 2011. All-hex
mesh generation via volumetric polycube deformation. Com-
puter Graphics Forum 30, 5.

HUANG, J., JIANG, T., SHI, Z., TONG, Y., BAO, H., AND DES-
BRUN, M. 2014. ℓ1-based construction of polycube maps from
complex shapes. ACM Trans. Graph. 33, 3 (June).

JIANG, T., HUANG, J., WANG, Y., TONG, Y., AND BAO, H. 2014.
Frame field singularity correction for automatic hexahedraliza-
tion. IEEE Transactions on Visualization and Computer Graph-
ics 20, 8.

KRAEMER, P., UNTEREINER, L., JUND, T., THERY, S., AND

CAZIER, D. 2014. CGoGN: n-dimensional meshes with combi-
natorial maps. In Proceedings of the 22nd International Meshing
Roundtable.

KREMER, M., BOMMES, D., AND KOBBELT, L. 2012. OpenVol-
umeMesh – a versatile index-based data structure for 3d poly-
topal complexes. In Proceedings of the 21st International Mesh-
ing Roundtable.

LI, Y., LIU, Y., XU, W., WANG, W., AND GUO, B. 2012. All-hex
meshing using singularity-restricted field. ACM Transactions on
Graphics 31, 6 (Nov.).

LIVESU, M., VINING, N., SHEFFER, A., GREGSON, J., AND

SCATENI, R. 2013. PolyCut: Monotone graph-cuts for polycube
base-complex construction. Transactions on Graphics (Proc.
SIGGRAPH ASIA 2013) 32, 6.

LIVESU, M., SHEFFER, A., VINING, N., AND TARINI, M.
2015. Practical hex-mesh optimization via edge-cone rectifica-
tion. ACM Trans. Graph. 34, 4 (July).

LYON, M., BOMMES, D., AND KOBBELT, L., 2016. libHexEx: a
robust hexahedral mesh extraction library. http://www.graphics.
rwth-aachen.de/software/libHexEx.

MÖBIUS, J., AND KOBBELT, L. 2012. OpenFlipper: An open
source geometry processing and rendering framework. In Curves
and Surfaces, vol. 6920 of Lecture Notes in Computer Science.

NIESER, M., REITEBUCH, U., AND POLTHIER, K. 2011. Cube-
Cover – parameterization of 3D volumes. Comp. Graph. Forum.

RAY, N., AND SOKOLOV, D. 2015. On smooth 3D frame field
design. Computing Research Repository.

SHEPHERD, J. F., AND JOHNSON, C. R. 2008. Hexahedral mesh
generation constraints. Engineering with Computers 24, 3.

SHEWCHUK, J. R. 1997. Adaptive precision floating-point arith-
metic and fast robust geometric predicates. Discrete & Compu-
tational Geometry 18, 3 (Oct.).

SHIMADA, K. 2006. Current trends and issues in automatic mesh
generation. Computer-Aided Design & Applications 3, 6.

http://www.graphics.rwth-aachen.de/software/libHexEx
http://www.graphics.rwth-aachen.de/software/libHexEx

