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Figure 1: Illustration of the geodesic iso-curve signature: For the computation of the signature at a surface point x geodesic circles are
computed around x for a set of geodesic radii. The descriptor captures the lengths of the isocontours of these circles. To the left three shapes
from the FAUST shape repository with isocontours at different radii are depicted. Further, the respective surface signatures (middle) for a
point located on the palm of their hands are shown. On the right the signature distance of a point located on the palm of the hand of the
female shape to all other points (across shapes) are shown. The red color indicates low distance values.

Abstract
During the last decade a set of surface descriptors have been presented describing local surface features. Recent approaches
[COO15] have shown that augmenting local descriptors with topological information improves the correspondence and seg-
mentation quality. In this paper we build upon the work of Tevs et al. [TBW∗11] and Sun and Abidi [SA01] by presenting a
surface descriptor which captures both local surface properties and topological features of 3D objects. We present experiments
on shape repositories that are provided with ground-truth correspondences (FAUST, SCAPE, TOSCA) which show that this
descriptor outperforms current local surface descriptors.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Computational Geometry and Object
Modeling—Line and curve generation

Keywords: shape matching, surface descriptor

1. Introduction

The comparison of shapes is a crucial task in shape analysis. E.g.
regarding shape collections we want to be able to compare shapes
from the same class to each other. For symmetry detection within
objects we need to find adequate matches between points which re-

quire an appropriate point signature. Also, tasks like classification
or shape segmentation require signatures which capture local sur-
face properties as well as global shape information. These are just
a few examples among many.

A vast amount of local surface signatures and global descriptors
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have been introduced. In recent shape analysis approaches these
descriptors are often combined (e.g. [KHS10]) by learning class
specific weights for each descriptor in tasks like segmentation or
classification. Although the accuracy of learned approaches is quite
high they always require prelabeled data for the training of the
weights. Furthermore, the more descriptors need to be trained the
more prelabeled data has to be provided for accurate results. This
underlines the relevance of accurate geometric descriptors.

Recently, Carrière et al. showed that augmenting local descrip-
tors with topological information can increase the performance for
segmentation and shape labeling tasks [COO15]. Still the topolog-
ical information alone is not sufficient to distinguish local surface
points. Hence, a descriptor which incorporates both local and topo-
logical surface information is a desirable goal.

In this paper we built upon the work of Tevs et al. [TBW∗11]
who grow geodesic discs around a surface point p in a small
geodesic radius (5% of the longest bounding box edge of a shape)
and measure the length of the isocontours at different radii. This
captures local surface properties. To also describe the global shape
of the object and capture major topological changes we exploit
the global representation presented by Sun and Abidi [SA01], who
compute the geodesic distances on the entire shape. Accordingly
we measure the lengths of isocontours across the entire shape.
When isocontours merge or split we are able to capture major
topological events with this signature. Furthermore, we show that
varying the sampling density of the selected radii vastly improves
matching performance of this descriptor. Our contribution can be
summarized as follows:

• We generalize the idea of Tevs et al. [TBW∗11] and Sun and
Abidi [SA01] by presenting the geodesic iso-curve signature
(GICS), a surface descriptor with an intuitive geometric under-
standing, and proposing an appropriate sampling and distance
function, such that the descriptor can be used for surface match-
ing effectively. Furthermore, this signature can be used to de-
scribe sets of points, polygonal curves, surfaces or arbitrary com-
binations of the named geometric primitives.
• We compare the GICS to the wave kernel signature [ASC11], the

Historgram of Geodesics descriptor presented in [LGB∗13], and
the local isocurve descriptor published by Tevs et al. [TBW∗11]
in several tests on shape collections which are provided with
ground-truth correspondences and receive superior results re-
garding the correspondence quality.
• We show that the proposed descriptor is more robust to deci-

mation than previous methods, which allows computations at a
lower resolution.
• Furthermore, we present two applications. First, since we can ex-

tend the formulation of the GICS to arbitrary sets of geometric
primitives, we are able to define signatures for line features. Sec-
ondly, we show that the GICS can be applied for value measured
maps by using it as a comparability function in the soft maps
framework presented in [SdGP∗15].

2. Related Work

Over the last decades a lot of surface signatures have been pre-
sented. It is out of the scope of this paper to discuss all of these

descriptors, hence we will only mention some of the important rep-
resentatives.

Local Descriptors Early approaches present descriptors which
are invariant under rigid motion. Some examples are Shape Con-
text [BMP00], Spin Images [JH99], intregral volume descriptors
[MHYS04, GMGP05], or multi-scale local features [LG05]. Mor-
tara et al. [MPS∗03] present a descriptor where they grow Eu-
clidean balls around a surface point and measure the length of the
surface intersection for different radii. Although this signature is
not invariant to isometric transformations, the idea of this signature
is similar to the one presented here.

Furthermore, a set of view based descriptors have been pre-
sented. Sun et al. project geodesic iso-curves onto the tangent
plane at a surface point p and compare these fingerprints by com-
puting the normal and projected contour length deviation along
the contours [SA01, SPK∗03]. As an intermediate representation
they present a data structure, the global fingerprint, that stores the
geodesic distance of the entire shape for a point p. In this work
we will also sample the radii from this global representation, but
in contrast to Sun et al. we will not project the iso-curves but
directly compare the arclengths. Also, Mahiddine et al. present
a similar idea by comparing level curves, which are 2D planar
curves that are projected onto cutting planes [MMDmB14]. A fur-
ther multi-resultion view based approach was presented by Dinh et
al. [DK06]. They define multi-resolution Spin-Images. A disadvan-
tage of projecting surfaces or curves onto 2D planes is that several
3D points might be projected onto the same 2D point, which can
limit the descriptiveness. This is why we measure the lengths of
the isocurves in 3D.

Several approaches were then proposed that are invariant un-
der isometric transformations. Since geodesic distances are iso-
metric invariant, a set of approaches based on geodesic distances
has been proposed. E.g. Hilgaga et al. [HSKK01] integrate the
geodesic distance from a surface point p to all other points. Elad et
al. [EK03] apply a multidimensional scaling procedure to geodesic
distances. The histogram of geodesic distances descriptor (HOG)
[MS09, LGB∗13] counts the number of sample points on the sur-
face which fall in the same bin of geodesic distances measured
from a local surface point. The separations between the bins are
evenly spaced and a χ

2-distance is used to compute the distance
between two histograms. Compared to the descriptor we present
here a surface integral is approximated between different geodesic
radii. Hence, alot of sample-points are required to obtain a good
approximation. Gatzke et al. [GGGZ05] compute curvature val-
ues within evenly spaced geodesic rings. Similarly, Tevs et al.
[TBW∗11] present a descriptor which computes the lengths of
geodesic isocurves in a small local radius around a surface point
p. We extend their work by computing geodesic radii on the entire
shape and show that by using an adequate sampling function of the
radii, this descriptor can outperform current local surface descrip-
tors with respect to their matching performance.

Furthermore, spectral descriptors like the heat-kernel signature
(HKS) or wave-kernel signature (WKS) have been presented which
are based on the Eigen decomposition of the Laplace-Beltrami ma-
trix of a 3D object [SOG09,BK10,ASC11]. These spectral descrip-
tors are appealing since they characterize a surface point in rela-
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tion to the entire shape. Especially, for the WKS the amount of
frequencies can be preselected which allows more accurate match-
ing than previously proposed methods. Our geodesic iso-curve sig-
nature also puts the local surface points in context to the global
shape. Especially, since prominent topological events are captured
in the signature more accurate matching results are achieved for the
test repositories. Furthermore, in contrast to spectral descriptors our
signature can be extended to characterize not only points but also
polygonal curves, surfaces, as well as combined sets of these prim-
itives. We will also show that our descriptor is more robust under
decimation.

Finally, methods which are based on well known descriptors
from image analysis have been presented. E.g. Kokkinos et al.
[KBLB12] presented a shape context descriptor which sorts de-
scriptors like the WKS or HKS into different spherical and radial
bins around a surface point.

Topological Descriptor Carriere et al. published a topological sig-
nature for points on 3D shapes [COO15]. They grow geodesic balls
around a surface point p and intersect this ball with the surface.
The radii for which the number of holes in the intersected surface
changes are stored in a persistence diagram, allowing to capture
topological object features. Carriere et al. show that augmenting
local descriptors with this topological signature improves match-
ing and supervised shape labeling results. This is the motivation
for our approach. We present a descriptor which by design captures
both local surface properties and topological events.

Supervised Learning Recently, several approaches based on su-
pervised learning have been presented. For this, a set of positive
and negative point correspondences are defined on training shapes.
These prelabled correspondences are input to a neural network,
which learns required parameters to map points on the mesh to the
descriptor space (see e.g. [BMM∗15, BMR∗16]). These methods
allow to learn very precise class specific descriptors but always re-
quire prelabeled data from objects of the same shape class.

Correspondence by Measure Valued Maps A recent line of re-
search focuses on the relaxation of the point-to-point correspon-
dence problem, which computes a map m : M→M′ for two
shapes M and M′ to the generation of measure valued maps
m :M→ Prob(M′) (see e.g. [SdGP∗15, SNB∗12, OBCS∗12]).
The measure valued maps are usually based on a point compatibil-
ity function like the WKS. Hence, our descriptor could be plugged
into such a framework to generate measure valued maps. As an ap-
plication we insert our descriptor as a compatibility function into
the softmaps framework [SdGP∗15].

Global Signatures Further research focuses on the definition of
global signatures, which allow to compare entire shapes. E.g.
Reuter et al. define the shape-DNA which stores the eigenvalues of
the Laplace operator [RWP06]. Rustanov et al. compare histograms
of pairwise distances in the descriptor space of the global point sig-
nature [Rus07]. These are just a few examples among many.

3. Properties of the Geodesic Iso-Curve Signature

Overall, the GICS descriptor has the following properties:

• Invariance to isometric transformations (intrinsic): The compu-
tation of the lengths of the iso-curves is based on the geodesic
distances from a surface point x. The geodesic distance g(x,y) on
points is an intrinsic metric (cf. [MPWC13]), i.e. for an isometry
T :M→M′ the identity g(x,y) = g(T (x),T (y)) holds. Then
for all points y on an isocontour cx(ri) (with length lx(ri)) of the
source point x at radius ri it holds that g(x,y) = g(T (x),T (y)).
Furthermore g(yi,y j) = g(T (yi),T (y j)) for all yi,y j ∈ cx(ri).
Hence, we measure the same length lT (x)(ri) of an isocon-
tour cT (x)(ri) for the transformed point T (x) at radius ri, i.e.
lT (x)(ri) = lx(ri) (More details on the computation of the radii
are given in Section 4).
• Sensitive to topological and geometric features: Upon topologi-

cal events geodesic isocontours split, merge, or parts of the iso-
contour vanish (when a geometric feature ends). When the iso-
contours that grow smoothly around a surface point meet, they
are merged, or respectively split when they grow around sepa-
rate topological features. In many cases such topological events
cause a sign change in the gradient of the signature function such
that they can be detected as peaks (see Figure 2). Furthermore,
when the radius exceeds the length of a geometrical feature (e.g.
the fingers of the humans in Figure 1), the length of the radius
decreases and drops to zero for the respective geometric part.
Hence, these events induce local maxima in the local continuous
length-function of the isocontours for prominent topological fea-
tures. This way characteristic topological changes of a shape are
captured.
• Capture local surface properties: Local samples of the radii

around a surface point capture the local shape properties. By ad-
justing the distribution of samples (geodesic radii) in the domain
of the length function lx(ri), we can make sure that the local
shape properties are captured well.
• Stability under re-tessellation and mesh decimation: The

geodesic descriptor is stable under decimation of the mesh. In
Section 5 we show that the signature distance of sub-sampled
versions of the mesh compared to the original shape are smaller
than for comparable signatures.
• Descriptor for arbitrary subsets of a shape: The GICS can be

used to describe arbitrary sets of points, polygonal curves, polyg-
onal graphs, or a combination of these. In Section 6.1 we show
an application for matching line features.
• Intuitive geometric understanding
• Easy implementation: The main part of the implementation in-

volves the computation of the geodesic distances, while the im-
plementation of the descriptor itself is extremely simple.

4. The Geodesic Iso-Curve Signature

Given a manifold surface M, our geodesic iso-curve signature is
based on the computation of lengths lx(ri) of isocontours around a
surface point x onM, at n different geodesic radii ri:

Dx = [lx(r1), lx(r2), . . . , lx(rn)] ∈ Rn

with radii

r1 ≤ r2 ≤ . . .≤ rn,ri ∈ R.
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Figure 2: Signatures of a sphere, plane and a torus: The red dots
represent the source points x from which geodesic disks are grown.
On the sphere no topological events occur. The cyan dot on the
signature of the plane denotes the point at which the radii grow out
of the plane, and parts of the isocontours vanish. The green point on
the torus marks the first topological event, where the isocontour is
split. The purple dot is positioned at the second topological event.
Here, the two isocontours merge again. On the left the signature
with the respective events are depicted. The two images of the torus
show the evolution of the isocontours on the shape from the front
(left) and the back (right).

The function lx(ri) maps the radius ri to the length of the corre-
sponding iso-curve:

lx∈M : [0,dmax(x)]→ R,

where dmax(x) = max{g(x,y)|∀y onM} denotes the maximal
geodesic distance onM from a surface point x.

For the computation of the signature several design choices have
to be made: (1) an algorithm to compute the geodesic distances is
selected, and (2) a method for the approximation of the isocontours
of the geodesic discs has to be chosen. In addition (3), a distance
metric has to be defined on the signatures for comparison. Finally,
(4) we need to decide how to sample the geodesic radii onM. In
the following we will discuss these design choices.

4.1. Geodesic Distances

Diverse algorithms exist to compute geodesic distances on a tri-
angular surface mesh M (e.g. [CWW13, CHK13, BK07, SSK∗05]).
We use approximate exact geodesic distances [BK07], because of
their robustness. However, if performance is the main goal the fast
heat method [CWW13] would be a good choice and depending on
the type of input data there might other preferable options. E.g. we
can apply anisotropic distance fields [CHK13] if we want to capture
different orientations as in [BMR∗16].

4.2. Radii Computation

We compute the geodesic distance from a seed point x on M. To
approximate the length lx(ri) of an isocontour corresponding to a
radius ri we sum up the lengths of the line segments between the
two intersection points of each triangle intersecting the isocontour

Figure 3: Approximation of the length of an isocontour (red). The
sub arcs of the isocontour are approximated by the line which con-
nects the two points at which the isocontour intersects the triangle
of a mesh M (left).

(see Figure 3). Let T = (v0,v1,v2) denote a triangle that is inter-
sected by the isocontour along the edges (v0,v1) and (v0,v2) for a
radius ri. The segment lxT (ri) of the isocontour that intersects this
triangle is approximated as:

lxT (ri) = |p1− p2|

with

p j = (1−α j) · v0 +α j · v j and α j =
|ri−g0|
|g j−g0|

,

where gi denotes the geodesic distance between x and vi. The sum
of the lengths of the segments lxT (ri) approximates the length of
the respective isocontour.

4.3. Distance Computation

For two shapesM andM′, we compute the distance of the signa-
tures of two points x onM and y onM′. Similar to [ASC11], we
define a distance using the L1 norm of normalized iso-curve length
distances at the same radii to compare the geodesic signatures:

Dg(x,y) =
imax

∑
i=0

|lx(ri)− l′y(ri)|
|lx(ri)+ l′y(ri)|

The lengths l′y(ri) on the shapeM′ are interpolated linearly from
the the two radii r′j and r′j+1 with r′j ≤ ri ≤ r′j+1, since the radii are
not necessarily sampled at the same values (cf. Section 4.4). From
each point the maximal geodesic distance dmax(x) on M can be
different. Hence, we compute a maximal index imax for which both
signatures have defined values. Hence imax is defined as

imax = max{i|ri ≤min(dmax(x),dmax(y))}

Finally, to make this distance symmetric, we compute the descrip-
tor distance DGICS(x,y) as:

DGICS(x,y) =
Dg(x,y)+Dg(y,x)

2
.

4.4. Radius Sampling

The function lx∈M : [0,dmax(x)]→ R, which describes the length
of an isocontour at radius r needs to be sampled at discrete values
r1, . . . ,rn in order to obtain a descriptor of size n. An obvious choice
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y = r · f (ls)
dmax(x)

ls

f (ls)

3 · δδ 2 · δ

f (2 · δ)

f (δ)

f (3 · δ)

Figure 4: Radius sampling. To capture local shape properties and
guarantee local shape awareness we adjust the distribution of sam-
ples (geodesic radii) in the domain of the length function according
to a monotonically increasing sampling function (right). On the left
we depict the respective sample distribution on a plane (red).

would be to uniformly sample r between 0 and dmax(x). Unfortu-
nately, then the local shape is not captured well by the signature.
To achieve local shape awareness we need to increase the density
of local samples. Hence, we introduce a continuous monotonically
increasing sampling function f : [0, ls]→ R. The domain of this
sampling function is fixed to preset values [0, ls] on which we uni-
formly sample (see x-axis in Figure 4 for n = 4). This domain is
equal for each shape, since we want to apply the same sampling for
each signature. Hence, the following increment is computed in the
domain:

δ =
ls
n

Since the maximum function value is f (ls), in order to obtain radius
values the function values need to be rescaled by dmax(x)

f (ls)
, such that

the radii can be computed as:

ri = f (i ·δ) · dmax(x)
f (ls)

In our experiments we use sampling functions of f (x) = x, f (x) =
x2, and f (x) = x4. Overall, we found that applying the sampling
function f (x) = x4 allows a more accurate distinction between local
surface properties.

4.5. Descriptor for Arbitrary Subsets

[BK07] present an extension to the exact geodesics computation
in [SSK∗05]. While the latter compute geodesic distances from iso-
lated point sets, Bommes et al. exended their work for arbitrary,
possibly open, polygons on the mesh which define the zero set
of the distance field. Hence, arbitrary sources can be set for the
computation of geodesic distances. E.g. we can choose point sets,
curves, polygonal graphs or even a mix of the afore mentioned as
sources. Then, the isocontours of the geodesic radii can be com-
puted for these sets as well, so that we can generate signatures for
sets of primitives:

DΩ = [lΩ(r1), lΩ(r2), . . . , lΩ(rn)],

where Ω denotes the set of primitives which is defined to be the
zero set of the distance field. The geodesic iso-curve signature of
Ω can then be computed exactly in the same manner as described
above.

5. Evaluation

We evaluate the geodesic signature by comparing it to the previ-
ously proposed wave kernel signature (WKS) [ASC11], the his-
togram of geodesic distances (HOG) [LGB∗13], and the original
signature presented by Tevs et al. [TBW∗11]. We chose the WKS,
since it is considered a state-of-the-art geometric descriptor and
is incorporated in many recent approaches (e.g. [JCK15, LB14,
SNB∗12]). Litman et al. state that the WKS achieves state-of-the-
art performance in many deformable shape analysis tasks [LB14].
The HOG signature and the descriptor by Tevs et al. are those most
related to our work. We can measure the matching performance
of these descriptors by comparing the correspondence scores on
shape collections with prelabeled ground-truth data. Furthermore,
we present a qualitative evaluation and show that our descriptor is
more robust under decimation.

5.1. Test Setup

Following [BMR∗16] we compute the cumulative match charac-
teristic (CMC), the reciever operator characteristic (ROC) and the
Princeton test on the shape collections FAUST [BRLB14], SCAPE
[ASK∗05], and TOSCA [BBK08]. These shape collections are
available online and have prelabeled correspondences. Hence, we
are able to perform a qualitative evaluation of our method.

Given a shape collection with a reference shape M0 with ver-
tices V0 and a set of shapesM1, . . . ,Mm with vertex sets V1, . . . ,Vm
respectively, which have prelabeled ground-truth correspondences
(v0x ,vix) for v0x ∈ V0 and vix ∈ Vi, i ∈ {1, . . . ,m} we perform the
following tests:

• CMC: The CMC measures the probability of a correct cor-
respondence among the k nearest neighbors, i.e. it captures
the hit-rate of positive matches in the k-NN neighborhood in
the descriptor space. To calculate the CMC we compute the
k = 100 nearest neighbors for each vertex v ∈ V0 on all shapes
M1, . . . ,Mm. In case the correct correspondence is the i-th near-
est neighbor with i≤ k, it is added to the characteristic at indices
≥ i.
• ROC: The ROC measures the percentage of positive and neg-

ative matches. I.e. for positive c+ = (p+ ∈ V0,q
+ ∈ Vi) ∈ C+

and negative matches c− = (p− ∈ V0,q
− ∈ Vi) ∈ C− the false

positive and true positive rates are measured as:

Nt p =
|{(p+,q+) ∈C+|d(p+,q+)≤ τ}|

|C+|

N f p =
|{(p−,q−) ∈C−|d(p−,q−)≤ τ}|

|C−| ,

where d(p,q) measures the descriptor distance of the points p
and q. The value τ defines a distance threshold in the descriptor
space, which is increased from zero to the maximal descriptor
distance.
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Figure 5: Distance maps in descriptor space. A point on the reference shape (leftmost) is compared to all other points on the same and on
other shapes. The shapes are taken from the FAUST dataset. Source points are located on the back of the hand, on the tip of the nose, and on
the foot. For better visualization the values are cropped at the median.

• Princeton protocol [KLF11]: The Princeton protocol computes
the percentage of matches that are within a geodesic radius r
from the ground-truth correspondence. The geodesic distances
are normalized by the square root area of the shape.

Furthermore, we use the following shape collections for our tests:

• FAUST [BRLB14]: This data set consist of ten humans which
were scanned in ten different poses each. We use shape 80 as a
reference shape to meshes 81 to 99. We perform the same test
with our GICS and with the WKS.
• TOSCA (from SHREC 2010, [BBK08]): This shape collection

consists of 64 objects, including 11 cats, 9 dogs, 3 wolves, 8
horses, 6 centaurs, and two different male figures, containing
7 and 20 poses. We down-sampled the meshes from 27.000 to
about 5.000 vertices. We used the first shape of each category as
the reference shape.
• SCAPE [ASK∗05]: The SCAPE data set consists of human

scans in seventy different poses. We use the first fifty meshes
for our tests.

Furthermore we use the following parameters for our tests. Note

that we use the descriptors with the parameters as they are pre-
sented in the respective paper:

• GICS: We use a descriptor size of 100, i.e. we take 100 sam-
ples of geodesic radii. The sampling functions applied here are
f (x) = x, f (x) = x2, and f (x) = x4. The value ls is set to 2.

• WKS: As described in [ASC11] we compute a descriptor size of
100 with 300 eigenvalues of the Laplace Beltrami matrix.

• HOG: We compute 100 bins with equal geodesic spacing. The
number of samples is in the size of the mesh (i.e. number of
vertices).

• Tevs et al.: We compute 16 geodesic radii, with the maximal
geodesic distance equal to 5% of the longest bounding box edge.
We also performed tests with more samples (100 radii), which
gave poorer results.

5.2. Results

Figure 5 shows a qualitative evaluation of our signature. We visual-
ize the descriptor distance exemplary for meshes from the FAUST
dataset. The signature distances are computed across the shapes for
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Figure 6: Results of the CMC, ROC, and Princeton test (from left to right) on the dataset FAUST, SCAPE, and TOSCA (top to bottom) for
the signatures GICS (with sampling function f (x) = x, f (x) = x2, and f (x) = x4) and by Tevs et al.

a point selected on the hand (top), the nose (middle), and on the
foot (bottom).

In Figure 6 we evaluate different sampling functions and com-
pare the matching results to the signature presented by Tevs et al.
For this, we show the plots for the CMC for k = 100, ROC, and
Princeton test with a maximal geodesic radius of 0.3 for the shape
collections FAUST, SCAPE and TOSCA (top to bottom). We ob-
serve that we achieve much more accurate matching performance
for the sampling functions f (x) = x2 and f (x) = x4 compared to
uniformly spaced sample radii (Tevs and linear GICS).

Figure 7 depicts the respective plots for the GICS (sampling
f (x) = x4), the WKS and the HOG. We perform the tests both sym-
metrically (symmetric counter parts of a correspondence are identi-
fied as a correct match) and asymmetrically. We compute the sym-
metric counter parts of each vertex by defining a symmetry plane
on the source shapes and aligning the two halfs of the mesh via
the iterative closest points method. Note, that the initial shape of
the FAUST and the SCAPE dataset have slight isometric defor-
mations, hence the symmetric matches are not as accurate as for
the TOSCA dataset. All symmetric results are depicted as dashed
curves. We can observe that our geodesic iso-curve descriptor out-

performs the previous signatures in nearly all tests. Especially, for
the CMC significant improvements can be measured. Furthermore,
our matching results can also compete with current approaches in
supervised learning (cf. [BMR∗16]). Although our results are not
as accurate as theirs, we do not require a training set, while still
receiving comparable results.

5.3. Stability under Re-Tesselation and Mesh Decimation

We demonstrate that the GICS is more stable under mesh decima-
tion compared to the wave kernel signature. Figure 8 depicts three
meshes with their respective descriptor distance to different lower
resolution versions of the meshes. The descriptor distances from
each point to the closest point on the high resolution shapes are
computed. We compute normalized signature distances for both our
geodesic iso-curve signature (top row) and the wave kernel signa-
ture (bottom row). The white color indicates a distance of zero (i.e.
zero error), while large distances are marked red (large error). The
first two meshes are taken from the FAUST data set. To the left the
original scan data with 176.744 vertices is depicted. It is compared
to its respective registration mesh with 6980 vertices (first column)
and a low resolution version with 500 vertices. The distance values

c© 2016 The Author(s)
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Figure 7: Results of the CMC, ROC, and Princeton test (from left to right) on the dataset FAUST, SCAPE, and TOSCA (top to bottom) for the
descriptors GICS (sampling function f (x) = x4), WKS, and HOG. The dashed curves describe symmetric results (i.e. the symmetric counter
parts of a correspondence are considered as correct matches) while the solid curves depict the asymmetric results. We can observe that our
descriptor outperforms the WKS and the HOG in nearly all tests.

for our geodesic iso-curve signature range from 0 to 0.47, while the
distance values for the WKS range from 0.85 to 1. In the images
above we show the complete range (0− 0.47) for our signature,
while we depict a range of 0.95−1 for the WKS. We also compare
the FAUST mesh with 6980 vertices to two lower resolution ver-
sions (1000 and 500 vertices) with values ranging from 0 to 0.14
for the GICS and 0 to 0.29 for the WKS. Finally, we also show
two lower resolution versions of the elphant with values in 0 to
0.26 for the GICS and 0 to 0.39 for the WKS. Overall, we observe
that the wave kernel signature shows a greater error, i.e. the max-
imum distance is approximately twice as large as the error for the
geodesic iso-curve signature. Furthermore, the error values of the
GICS seem to be quite constant on the meshes, whereas those of
the WKS show several local maxima on the shapes.

6. Applications

In the following we will present two applications for our geodesic
iso-curve descriptor.

6.1. Feature Line Signature

Arbitrary sources can be set for the computation of geodesic dis-
tances. This is especially useful for the description of curves, which
allows us to to define a signature for line features.

In the case of line features we have one signature for each feature
curve. Figure 9 illustrates an example of the geodesic signature on
feature lines for a "tele alien" shape. The initial feature lines are
computed with [YBS05] (left). We computed the distance of the
red feature on the second tele alien to all other line features of the
mesh and show its best matching feature curve on the third shape.
The bottom row encodes the distance values where we cutoff the
distance threshold at increasing values (left to right).

Further, we show an example for across shape feature line match-
ing in Figure 10. Here the circular shaped feature around the left
eye of the first tele alien is selected as the source feature. The dis-
tance values to the other features are encoded in red (low distance)
and blue (high distance). The best matches on second shape also
represent circular arcs around the tele aliens eyes.

c© 2016 The Author(s)
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Figure 8: Stability under decimation test. Each of the three meshes
is downsampled to two lower resolutions. The descriptor distances
from each point to the closest point on the high resolution shapes
are computed. High distance values are encoded in red, while
points with low distance values are colored white. I.e. strong er-
ror is marked red. The upper row shows the distance values for our
descriptor, while the bottom row shows distances for the WKS. The
maximal distances of the WKS are about twice as high.

6.2. Softmaps

Solomon et al. have presented an efficient method to compute soft
maps between surfaces in [SdGP∗15]. These soft maps describe a
measure valued map m :M→ Prob(M′), where each point onM
is mapped to a probability distribution over M′. They are based
on a compatibility function c(x,y), where small values of c(x,y)
indicate that x on shapeM and y on shapeM′ are geometrically
similar. We use the distance function described is Section 4, which
computes descriptor distances on our signatures as a compatibility
function. Figure 11 shows soft maps from of the leftmost shape to
itself (left) and to two other shapes for two different points x on the
source shape (on the finger and the knee).

We compare the soft maps generated with our geodesic iso-curve
signature to soft maps applying the WKS as a compatibility func-
tion in Figure 12. The selected source point (finger) equals the one
chosen in Figure 11 (top). The probability distributions computed
across the shapes differ more than those computed with our sig-
nature (especially for the female shape). Furthermore, we observe
strong maxima at the feet of the third shape. Overall, we believe
that the distributions computed with our signature enable good re-
sults in the soft maps framework and generate similar distributions
across shapes from the same collection.

Limitations The presented descriptor has some limitations which
need to be pointed out. First of all, to compute the signature we

Figure 9: Extension to line features. Geodesic isocontours are
computed for radii growing around a curve segment. We computed
feature curves with [YBS05] (top, left) and illustrate the isocon-
tours around a representative curve (top, middle) and its best match
in descriptor space (top, right). The bottom row encodes the dis-
tance values of the feature curves in descriptor space, where the
maximal descriptor distance is cut off for increasing values (left
to right). The red color indicates a high matching score (i.e. low
descriptor distance).

need to compute geodesic distances from all sample points. This
affects the computational efficiency. E.g. to compute the signa-
ture with exact geodesics [BK07] for the FAUST datasets (6890
vertices) takes about 43 ms per sample. We can improve this by
using geodesics in heat [CWW13] (about 3 ms). Also, it might
be interesting to evaluate whether Biharmonic distances presented
in [SRGB14] can be used to approximate the geodesic distances in
this setting to improve the performance.

A further limitation of our approach is that this signature is not
scale invariant in its current form, we believe that it can be trans-
formed into a scale invariant version by scaling the meshes by an
average geodesic distance before the computation. We leave this
task for future work.

c© 2016 The Author(s)
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Figure 10: Across shape feature line matching. The circular shaped
feature curve around the left eye of the first tele alien is selected as
the source feature. The distance values to the other features are
encoded in red (low distance) and blue (high distance). The best
matches on second shape represent circular arcs around the tele
aliens eyes as well.

7. Conclusion

In this paper we have extended the signatures presented in
[TBW∗11] and [SA01] to capture both prominent topological in-
formation and local surface properties of a 3D object. The geodesic
iso-curve signature allows to describe arbitrary sets of geometric
primitives, which can lead to interesting new research directions in
the field of shape analysis. We have performed extensive tests on
shape repositories, which result in superior matching scores com-
pared to the WKS, HOG, and the signature by Tevs et al. Also, we
have shown that our descriptor is more robust to decimation of the
mesh than the WKS.

Furthermore, we have demonstrated two applications for our
point signature. We showed that it can be applied for the description
of feature lines and that it enables good results in the framework of
soft maps.

Especially, due to the significant results in the matching tests,
we believe that this descriptor can have important impact on shape
analysis tasks. Not only does it describe local surface points more
accurately than currently published local descriptors, also in the
field of supervised learning a more descriptive signature can reduce
the amount of training data that is required for the respective task.
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[COO15] CARRIÃĹRE M., OUDOT S. Y., OVSJANIKOV M.: Stable
topological signatures for points on 3d shapes. Computer Graphics Fo-
rum 34, 5 (2015), 1–12. doi:10.1111/cgf.12692. 1, 2, 3

[CWW13] CRANE K., WEISCHEDEL C., WARDETZKY M.: Geodesics
in heat: A new approach to computing distance based on heat flow.
ACM Trans. Graph. 32, 5 (Oct. 2013), 152:1–152:11. doi:10.1145/
2516971.2516977. 4, 9

[DK06] DINH H. Q., KROPAC S.: Multi-resolution spin-images. In
2006 IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR’06) (June 2006), vol. 1, pp. 863–870. doi:
10.1109/CVPR.2006.197. 2

[EK03] ELAD A., KIMMEL R.: On bending invariant signatures for sur-

faces. IEEE Trans. Pattern Anal. Mach. Intell. 25, 10 (Oct. 2003), 1285–
1295. doi:10.1109/TPAMI.2003.1233902. 2

[GGGZ05] GATZKE T., GRIMM C., GARLAND M., ZELINKA S.: Cur-
vature maps for local shape comparison. In International Conference on
Shape Modeling and Applications 2005 (SMI’ 05) (June 2005), pp. 244–
253. doi:10.1109/SMI.2005.13. 2

[GMGP05] GELFAND N., MITRA N. J., GUIBAS L. J., POTTMANN
H.: Robust global registration. In Proceedings of the Third Eurograph-
ics Symposium on Geometry Processing (Aire-la-Ville, Switzerland,
Switzerland, 2005), SGP ’05, Eurographics Association. URL: http:
//dl.acm.org/citation.cfm?id=1281920.1281953. 2

[HSKK01] HILAGA M., SHINAGAWA Y., KOHMURA T., KUNII T. L.:
Topology matching for fully automatic similarity estimation of 3d
shapes. In Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques (New York, NY, USA, 2001), SIG-
GRAPH ’01, ACM, pp. 203–212. doi:10.1145/383259.383282.
2

[JCK15] JENI L. A., COHN J. F., KANADE T.: Dense 3d face alignment
from 2d videos in real-time. In 2015 11th IEEE International Confer-
ence and Workshops on Automatic Face and Gesture Recognition (FG)
(2015). URL: articles/Jeni15FG_ZFace.pdf. 5

[JH99] JOHNSON A. E., HEBERT M.: Using spin images for efficient ob-
ject recognition in cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach.
Intell. 21, 5 (May 1999), 433–449. doi:10.1109/34.765655. 2

[KBLB12] KOKKINOS I., BRONSTEIN M. M., LITMAN R., BRON-
STEIN A. M.: Intrinsic shape context descriptors for deformable shapes.
In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Con-
ference on (June 2012), pp. 159–166. doi:10.1109/CVPR.2012.
6247671. 3

[KHS10] KALOGERAKIS E., HERTZMANN A., SINGH K.: Learning
3d mesh segmentation and labeling. In ACM SIGGRAPH 2010 Papers
(New York, NY, USA, 2010), SIGGRAPH ’10, ACM, pp. 102:1–102:12.
doi:10.1145/1833349.1778839. 2

[KLF11] KIM V. G., LIPMAN Y., FUNKHOUSER T.: Blended intrinsic
maps. In ACM SIGGRAPH 2011 Papers (New York, NY, USA, 2011),
SIGGRAPH ’11, ACM, pp. 79:1–79:12. doi:10.1145/1964921.
1964974. 6

[LB14] LITMAN R., BRONSTEIN A. M.: Learning spectral descriptors
for deformable shape correspondence. IEEE Transactions on Pattern
Analysis and Machine Intelligence 36, 1 (Jan 2014), 171–180. doi:
10.1109/TPAMI.2013.148. 5

[LG05] LI X., GUSKOV I.: Multi-scale features for approximate align-
ment of point-based surfaces. In Proceedings of the Third Eurograph-
ics Symposium on Geometry Processing (Aire-la-Ville, Switzerland,
Switzerland, 2005), SGP ’05, Eurographics Association. URL: http:
//dl.acm.org/citation.cfm?id=1281920.1281955. 2

[LGB∗13] LIAN Z., GODIL A., BUSTOS B., DAOUDI M., HERMANS
J., KAWAMURA S., KURITA Y., LAVOUÃL’ G., NGUYEN H. V.,
OHBUCHI R., OHKITA Y., OHISHI Y., PORIKLI F., REUTER M., SIPI-
RAN I., SMEETS D., SUETENS P., TABIA H., VANDERMEULEN D.: A
comparison of methods for non-rigid 3d shape retrieval. Pattern Recog-
nition 46, 1 (2013), 449 – 461. doi:http://dx.doi.org/10.
1016/j.patcog.2012.07.014. 2, 5

[MHYS04] MANAY S., HONG B.-W., YEZZI A. J., SOATTO S.: Com-
puter Vision - ECCV 2004: 8th European Conference on Computer Vi-
sion, Prague, Czech Republic, May 11-14, 2004. Proceedings, Part IV.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, ch. Integral Invari-
ant Signatures, pp. 87–99. URL: http://dx.doi.org/10.1007/
978-3-540-24673-2_8. 2

[MK12] MÖBIUS J., KOBBELT L.: OpenFlipper: An Open Source Ge-
ometry Processing and Rendering Framework. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2012, pp. 488–500. URL: http://
dx.doi.org/10.1007/978-3-642-27413-8_31, doi:10.
1007/978-3-642-27413-8_31. 10

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

http://dx.doi.org/10.1109/CVPR.2010.5539838
http://dx.doi.org/10.1111/cgf.12693
http://dx.doi.org/10.1111/cgf.12693
http://dx.doi.org/10.1111/cgf.12173
http://dx.doi.org/10.1111/cgf.12692
http://dx.doi.org/10.1145/2516971.2516977
http://dx.doi.org/10.1145/2516971.2516977
http://dx.doi.org/10.1109/CVPR.2006.197
http://dx.doi.org/10.1109/CVPR.2006.197
http://dx.doi.org/10.1109/TPAMI.2003.1233902
http://dx.doi.org/10.1109/SMI.2005.13
http://dl.acm.org/citation.cfm?id=1281920.1281953
http://dl.acm.org/citation.cfm?id=1281920.1281953
http://dx.doi.org/10.1145/383259.383282
articles/Jeni15FG_ZFace.pdf
http://dx.doi.org/10.1109/34.765655
http://dx.doi.org/10.1109/CVPR.2012.6247671
http://dx.doi.org/10.1109/CVPR.2012.6247671
http://dx.doi.org/10.1145/1833349.1778839
http://dx.doi.org/10.1145/1964921.1964974
http://dx.doi.org/10.1145/1964921.1964974
http://dx.doi.org/10.1109/TPAMI.2013.148
http://dx.doi.org/10.1109/TPAMI.2013.148
http://dl.acm.org/citation.cfm?id=1281920.1281955
http://dl.acm.org/citation.cfm?id=1281920.1281955
http://dx.doi.org/http://dx.doi.org/10.1016/j.patcog.2012.07.014
http://dx.doi.org/http://dx.doi.org/10.1016/j.patcog.2012.07.014
http://dx.doi.org/10.1007/978-3-540-24673-2_8
http://dx.doi.org/10.1007/978-3-540-24673-2_8
http://dx.doi.org/10.1007/978-3-642-27413-8_31
http://dx.doi.org/10.1007/978-3-642-27413-8_31
http://dx.doi.org/10.1007/978-3-642-27413-8_31
http://dx.doi.org/10.1007/978-3-642-27413-8_31


A. Gehre, D. Bommes, L. Kobbelt / GICS

[MMDmB14] MAHIDDINE A., MERAD D., DRAP P., M. BOÃŔ J.: Par-
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