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Abstract

Polycube mapping is an attractive approach for the generation of all-hexahedral meshes with a fully regular
interior, i.e. free of internal singular edges or vertices. It is based on determining a low distortion map
between the input model and a polycube domain, which then pulls back the regular voxel grid to form a
hexahedral mesh for the model. Automatically finding an appropriate polycube domain for a given model,
however, is a challenging problem. Existing algorithms are either very sensitive to the embedding and
orientation of the input model, restricted to only subclasses of possible domains, or depend crucially on
some initialization because they rely on a non-convex optimization formulation. This can easily lead to
unsatisfactory and unnecessary corners and edges in the polycube structure. We present a novel approach
to the problem of finding high-quality polycube domains. It is based on an entirely intrinsic formulation as
a mixed integer optimization problem, which can be tackled by solving a series of simple convex problems,
each of which can be solved to the global optimum. Experiments demonstrate that our method avoids many
of the undesired corners and surface irregularities common to many previous methods.
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Figure 1: Hexahedral meshes generated for a given model (center) via maps to polycube domains (bottom) which have been
generated either extrinsically (left) or intrinsically (right). Notice how the extrinsic approach creates numerous spurious,
unnecessary corners and kinks in the polycube domain, which translate into extraordinary boundary vertices and edges in the
mesh (some circled), often lowering mesh quality unnecessarily.
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1. Introduction

Manually or semi-manually designed hexahedral volume meshes have been used for decades in computer-
aided engineering, simulation, and analysis. The significantly higher cost compared to tetrahedral mesh
generation, which can be robustly automated, may be justified by higher efficiency and accuracy observed
in various fields (Sarrate et al., 2014; Cifuentes and Kalbag, 1992; Benzley et al., 1995; Ramos and Simões,
2006; Bourdin et al., 2007; Tadepalli et al., 2011), though not in general (Schneider et al., 2019).

Following advances in the automatic generation of quadrilateral surface meshes (Kälberer et al., 2007;
Bommes et al., 2009, 2013a) based on field-guided integer grid maps, recent research has looked into extend-
ing these results for the automatic generation of high-quality volumetric hexahedral meshes. Unfortunately,
the generalization of the involved 2D cross fields to 3D frame fields comes with a number of crucial theoretical
and practical problems (Vaxman et al., 2016). Unless one resorts to manual efforts once again (Nieser et al.,
2011), the results of field generation (Huang et al., 2011) are thus not rarely invalid. Problems are related
to the singularities of the fields, which in the 3D case do not generally translate into a proper structure of
irregular (or extraordinary) edges and vertices for the hexahedral mesh (Liu et al., 2018).

Efforts have been spent to eliminate invalid configurations in a post-process (Huang et al., 2012; Li
et al., 2012; Jiang et al., 2014; Reberol et al., 2019). While these methods are able to fix local issues in the
field, global inconsistencies remain. Hence, the problem of automatically generating a 3D frame field with
a free, non-prescribed singularity structure that is guaranteed to imply a valid irregularity structure for a
hexahedral mesh is still open, preventing this class of algorithms from being practically sufficient yet.

Interior-Regular Hexahedral Meshes

An attractive alternative, which avoids the aforementioned problem by design, is to restrict to the class
of interior-regular hexahedral meshes, i.e. those with irregular edges and vertices only on the boundary
but not in the interior. Such meshes can be obtained by constructing a polycube map, mapping the input
model to an axis-aligned polycube domain, such that the inverse map turns part of the voxel grid into
a boundary aligned hexahedral mesh for the model (where the cubes of the polycube correspond to the
individual hexahedra of the mesh), see Figure 1. This approach is attractive because, with proper definition
of the employed map (cf. Section 3), it is fully general, i.e. theoretically able to generate any interior-regular
hexahedral mesh for a given solid model.

The restriction to interior-regular meshes can put some constraints on the mesh quality (in terms of
element shape) that can be achieved. At the same time, it can also be an advantage in certain contexts
where internal irregularities have significant adverse effects, e.g., due to reduced smoothness in volumetric
spline space constructions (Wang et al., 2013; Wei et al., 2018).

The key challenge in this context is finding a suitable polycube domain and finding a bijective map to
that domain.

Previous approaches to this challenge can be classified into two categories: separate generation of the
domain and the map into this domain in two steps, or combined generation of both in an integrated manner.
In the latter case the map quality, thus the resulting mesh quality, can directly influence the domain structure,
whereas in the former case such geometric information is not or only heuristically available in the domain
construction process.

Contribution

Our method belongs to the more powerful class of combined construction of map and domain. We point
out that this combined problem is effectively a mixed integer optimization problem: there are continuous
and discrete degrees of freedom, the discrete ones stemming from the fact that the domain boundary needs
to be piecewise aligned to a discrete set of (axis-aligned) orientations in order to form a polycube, i.e. in
order to imply a hexahedral mesh whose elements are properly aligned with the model’s boundary.

Such problems are notoriously hard to solve to the global optimum. Recently, efficient approximative
strategies have been used successfully for mesh generation purposes: via successive discretization (or round-
ing) of a continuous relaxation of the mixed integer problem (Bommes et al., 2010), high quality results
can be obtained in the construction of direction fields, quad meshes, and hex meshes (Bommes et al., 2009;
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Li et al., 2012; Iarussi et al., 2015; Panozzo et al., 2013; Huang et al., 2012; Liu et al., 2011; Campen and
Kobbelt, 2014). A simpler direct, all-at-once rounding typically shows poorer (e.g. in the case of quad or
hex mesh generation (Bommes et al., 2013b; Liu et al., 2011)) or even inacceptable (e.g. in the case of cross
field generation) results(Bommes et al., 2010).

We present a formulation that allows us to apply this principle to the problem of domain and map
construction for polycube mapping. This is in contrast to the previous approaches in this class of methods,
which can abstractly be interpreted as (sometimes implicitly) making use of all-at-once discretization. The
principle of successive discretization furthermore allows us to design our method to be of intrinsic nature,
independent of the embedding and global orientation of the input model (cf. Figure 1) – a property not
offered by all but one existing polycube-based method.

2. Related Work

The general field of hexahedral mesh generation is very broad. We focus our attention here on previous
work related specifically to the generation of interior-regular hexahedral meshes.

Grid-based. Probably the simplest approach for this purpose is based on voxelization (overlay grid method),
intersecting the given model with a Cartesian grid (Schneiders, 1995; Zhu and Blacker, 2000; Wan et al.,
2011; He et al., 2009), possibly with structural post-processing (Yu et al., 2014; Yang et al., 2019). Adaptive
grids can also be used (Schneiders et al., 1996; Zhang and Bajaj, 2006); their transitions between levels
of resolution lead to meshes with interior singularities though. A major disadvantage of the grid-based
approach is the lack of boundary-sensitivity. The worst-shaped elements are found at the surface, while the
interior is perfectly regular. Unfortunately, in many applications high element quality is particularly desired
near the boundary (Blacker, 2000).

Graph-based. A more boundary-sensitive result can be achieved by basing the mesh generation not on an
extrinsic grid, but a structural graph embedded in the model (such as a shape skeleton or Reeb graph) and
an accompanying surface segmentation (such as a pants decomposition) (Liu et al., 2015; Usai et al., 2016;
Livesu et al., 2016; Li et al., 2013; Lin et al., 2008). This approach is best-suited for shapes consisting of
tubular parts, not necessarily appropriate for generic use. For the design of a proper graph of high quality
some manual efforts might be required in some methods.

Deformation-based. To be able to more directly take the resulting polycube map quality (thus mesh quality)
into account, it is advisable to actually work with the map when determining the domain structure. One
can initialize this with the identity map, and then (incrementally) modify it to turn an object’s image under
the map into a polycube. This can also be interpreted as deforming the input model with the goal of making
its boundary piecewise aligned with the coordinate planes.

Most methods of this type make the choice of which coordinate plane to align which part of the model’s
boundary to based on the model’s embedding and orientation in space (Gregson et al., 2011; Livesu et al.,
2013; Yu et al., 2014; Huang et al., 2014; Fu et al., 2016), possibly with interactive editing options (Li
et al., 2021). These approaches are able to quite robustly generate hexahedral meshes, however, due to this
reliance on extrinsic information, from a quality point of view they often don’t reach the quality of manually
designed meshes. For instance, a bent cuboid (in a U or C shape), will develop corners (forming irregular
boundary vertices) in the deformation process, even though intrinsically the geometry does not call for any
such faults – it could simply be un-bent (cf. Figure 1, the lower half of the model). It is typically along
these irregular boundary edges and corners that the distortion of the polycube map is particularly bad (cf.
Figs. 10, 12 in (Fu et al., 2016)).

A further limitation is due to the common use of a simple map, rather than a chart-atlas map (as detailed
in Section 3), which restricts the class of meshes and limits the mesh quality that can be achieved on models
of non-zero genus.

The only non-extrinsic (and chart-atlas based) approach in this category for interior-regular meshes so
far was described by Fang et al. (2016). They use a non-convex, non-linear optimization objective. It thus
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requires a good initialization to yield good results. The objective employed to obtain an initialization has an
inherent dilemma: it combines a term that penalizes the occurrence of internal irregularities and a term that
promotes boundary alignment. One ultimately needs both properties (no irregularities and full boundary
alignment) to yield a provably good result, but in this formulation one can only strike a balance between
both terms. As was shown, the behavior of the procedure thus is somewhat unpredictable: it can work
extremely well on several highly complex models, but at the same time break down and fail on models as
primitive as a sphere. We formulate the problem of finding a polycube domain together with a map onto it
as a mixed integer problem instead. Its solution can be approximated by a series of convex problems, each
of which can be solved to the global optimum. Thus, while being computationally more intensive, we are
able to avoid potential breakdowns due to bad initializations.

3. Problem Formulation

Consider a continuous, locally injective map f from a solid model M ⊂ R3 to a 3-manifold domain Ω
(with boundary):

f :M→ Ω.

In order to be a boundary-aligned, interior-regular map that implies a proper (infinitesimal) hexahedral
mesh for M, f needs to fulfil the following property:

((∇f)TpM)⊥ ∈ E , ∀p ∈ ∂M\N (1)

ex

ez ey
f

M Ω

where E = {ex,−ex, ey,−ey, ez,−ez} is the set of oriented Euclidean
coordinate axis vectors in R3. This means that the orthogonal com-
plement of the mapped tangent space TpM (i.e. the normal) is aligned
with a coordinate axis. N is some network of curves on ∂M where this
condition does not need to hold (corresponding to the edges of Ω, where
∇f and the normal are not defined – black in the inset). Quantization
to a discrete grid is considered later in Section 8.

We use a discretization of M by means of a tetrahedralization, and consider ∇f piecewise constant, i.e.
f linear per tetrahedron. The set of tetrahedra is denoted {ti} in the following. We assume each tetrahedron
has at most one facet on the boundary ∂M; this can easily be ensured by splitting. The boundary facet of
tetrahedron ti, if it exists, is denoted bi, and its outward normal ni.
M is given as input, f (the polycube map) and Ω (the polycube) are unknown and need to be constructed.

3.1. Chart-Atlas

The map f needs not be one continuous piece: we can use a chart atlas. Precisely, we can cut M
into charts (for instance, each tetrahedron could be a separate chart), and require f to be related across
charts by grid-preserving transition functions (composed of rotations from the chiral cubical symmetry group
and translations) across the cuts (Nieser et al., 2011). By additionally requiring the transition functions
to be cycle-consistent (their composition along any infinitesimal loop being the identity), f still implies a
boundary-aligned interior-regular hexahedral mesh in M. Without this additional identity property, the
implied mesh would have irregularities (Nieser et al., 2011).

Cutting M into multiple charts actually does not yield any additional degrees of freedom in terms
of obtainable mesh structures. However, if M is not simply-connected, of genus g > 0, cutting it into
one simply-connected chart does yield the additional degrees of freedom that allow any interior-regular
hexahedral mesh to be represented by f (see Fig. 3 and (Fang et al., 2016)). We give the necessary algorithmic
steps for cutting in Section 7, after explaining the core method, for clarity, without consideration of cuts in
the following.

4



3.2. Quality Objective

The parametric distortion incurred by the map f directly determines the element quality of the hexahe-
dral mesh. We determine f using the following optimization.

We use a Poisson objective, constrained by (1):

f = min
f∗

∫
M

‖∇f∗ −Ropt‖2dV, (2a)

where Ropt :M→ SO(3) is a rotation field of minimal variation

Ropt = min
R

∫
M

‖∇R‖2 dV, (2b)

that itself is constrained to be axis-aligning via

Rn(p) ∈ E , ∀p ∈ ∂M, (1’)

where n(p) is the surface normal at point p. Note that R defines a boundary-aligned orthonormal frame
field R−1E in M – an alternative perspective that may provide additional intuition. Also note how this
constraint is effectively a weak version of (1).

So together we obtain f via the objective

f = min
f∗

∫
M

∥∥∥∇f∗ −min
R

∫
M

‖∇R‖2 dV
∥∥∥2dV, (2)

subject to constraints (1) and (1’).
The choice of this Poisson objective, fitting the Jacobian of f to a maximally smooth axis-aligning

rotation field, over other possible free-boundary mapping objectives such as ARAP (Liu et al., 2008; Chao
et al., 2010; Alexa et al., 2000) or the recent one from Garanzha et al. (2021) was made not only because it
is faster computationally, but because it proved to typically develop a lower number of irregular boundary
edges and vertices (polycube corners) in surface regions that do not locally call for it.

3.3. Mixed-Integer Nature

This central problem (2) s.t. (1,1’) is (or can be posed as) a mixed-integer problem. This is due to the
discrete choices that need to be made in both types of constraints.

In detail, considering a discretized version of the problem, with ∇f and R piecewise constant, for every
boundary facet b of M one out of six choices needs to be made: which of the six oriented axis directions
±ex, ±ey, ±ez in R3 shall the normal of f(b) be aligned to? As allowing different choices in (1) and in (1’)
is unreasonable, there is essentially one discrete degree of freedom per boundary facet.

4. Optimization Strategy

We start by considering the relaxed, non-integer form of the problem. This is simply (2) without the
discrete constraints. Note that this is a convex problem. A global optimum can be obtained by first solving
(2b) and then (2a); the latter, due to the 2-norm, comes down to a simple linear system solve. Note that
the minimizer f of this relaxed problem is, up to a rigid transformation, the identity. We then proceed in
two stages:

Stage I: Soft Alignment. A successive discretization strategy is applied to the relaxed problem to obtain a
solution to (2) s.t. (1’). This process is along the lines of and in analogy to successive greedy integer rounding
(Bommes et al., 2010). Effectively, a series of continuous convex optimizations is performed, starting with
the relaxed problem and increasingly constrained by convex linear constraints (with fixed discrete degrees
of freedom, e.g. “= −ey” instead of “∈ E”). This is detailed in Section 5.
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relaxed (2) adding (1’) by successive rounding

adding (1)

quantization inverse mapping

Figure 2: Demonstration of our method. An initial (identity) map and domain (gray) is obtained for the input model (left)
via a relaxed continuous version of (2) s.t. (1’). The discrete degrees of freedom in (1’) are then optimized by a successive
mixed integer rounding strategy (the axis choices are visualized by corresponding colors). The exact constraints (1) are added
afterwards to obtain a proper polycube domain. This is then quantized to integer edge lengths, allowing for a trivial hexahedral
mesh generation via the canonical integer grid in R3. Mapped by the inverse map this yields a boundary aligned, interior-regular
hexahedral mesh for the model (right).

Stage II: Hard Alignment. Afterwards, the constraints (1) are added to the problem, with fixed discrete
choices, inherited from those already made for (1’) in the previous stage. The resulting problem is continuous
and convex. This stage is detailed in Section 6.

Figure 2 gives an overview of the entire process, from input model to final interior-regular hexahedral mesh.

5. Stage I: Soft Alignment

Our goal in this stage is to solve (2) s.t. (1’). The discretized version of (1’) simply reads Rini ∈ E ∀bi. We
start with a continuous relaxation of this problem, where these discrete constraints are effectively replaced
by non-discrete counterparts Rini ∈ R3 (which is obviously tautological and satisfied when simply neglecting
these constraints).

We define the distance n−E = mine∈E ‖n−e‖, and the closest axis e(n) = argmine∈E ‖n−e‖. With these
definitions in place, we can apply a greedy, successive rounding strategy: the relaxed constraint Rini ∈ R3

belonging to the boundary facet bi for which f(ni)−E is globally minimal, is replaced by the actual (fixed)
constraint Rini = e(f(ni)). Here f(ni) is defined as the normal of f(bi), i.e. a normal of the object deformed
by the current state of f (initially the identity). Notice the analogy with greedy mixed integer rounding
(Bommes et al., 2010): the value that is closest to one of its possible discrete value choices (in the current
solution) is fixed to this closest choice.

Whenever constraints are replaced, the problem is resolved. This amounts to

• first optimizing the convex problem (2b) (cf. Section 5.1)
with an increasing number of constraints Rini=e (cf. Section 5.2)

• then optimizing the convex problem (2a) (cf. Section 5.3), updating the map f .

As we want an intrinsic formulation, we do not make the choices based on alignment to extrinsic global
coordinate axis, but relative to already rounded neighborhoods. The set of fixed boundary facets thus forms
a connected region at any stage of the process. Figure 2 shows an example of this process. Note that any
polycube can be rigidly embedded in an axis-aligned manner in R3 in 24 different ways (based on the cubical
symmetry group). To settle this degree of freedom, we initially fix two neighboring boundary facets to two
arbitrary different axes, thereby making one out of 6× 4 = 24 choices without loss of generality. We make
this choice of two different axes where it is geometrically most appropriate, i.e. for the two boundary facets
adjacent to the edge whose dihedral angle is globally closest to π/2. These two facets essentially form the
seed of the successive rounding process, which can be imagined as a front propagation.

Notice that the process is entirely intrinsic: The global orientation of the input model does not have any
effect on the result; even further, this intrinsic nature enables the “unrolling” of model parts (see Figure 2
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or the twisted bar in Figure 6 bottom center), i.e. the initial extrinsic normal of a surface point does not tell
anything about its final alignment under the polycube map we construct. This is in contrast to the various
previous extrinsic approaches discussed in Sec. 2.

One can perform the successive rounding one by one, or fix multiple boundary facets in each iteration
for faster processing. We choose to, per iteration, fix all facets that are directly adjacent to previously fixed
ones. This showed only small differences compared to individual fixing, while significantly speeding up the
process. If ∂M has multiple components (whenM contains voids), the voids’ boundary facets are processed
successively after the outer boundary is done.

5.1. Optimizing (2b)

We need to decide what kind of representation to use for the rotation field R, i.e., how to express the ro-
tation Ri per tetrahedron. Some previous work has used a spherical harmonics representation (Huang et al.,
2011), which, however, is invariant with respect to cubical symmetry and thus is oblivious to singularities.
Hence it does not allow for immediate strict control over the required interior-regularity of the result during
the optimization process (possibly causing failure, as reported by Fang et al. (2016)).

Quaternions. We instead use quaternions to represent R. A quaternion qi = (qw, qx, qy, qz)T per tetrahe-
dron ti represents Ri (via normalization in case qi is not a unit quaternion). Compared to an alternative
rotation representation by means of matrices, this representation is more compact, and simpler (fewer)
constraints are required in the following.

Under this setting, objective (2b) can be discretized as follows:

qopt = min
q

∑
ij

wij ‖qi − qj‖2 , ‖qi‖ = 1 ∀i,

where the sum is over all non-boundary tetrahedral facets, with adjacent tetrahedra i and j. Instead of the
per-element unit constraints ‖qi‖ = 1, we relax the problem to a global unit constraint ‖q‖ = 1 as follows:

qopt = min
‖q‖=1

∑
ij

wij ‖qi − qj‖2 .

This allows us to efficiently formulate and solve this problem as an eigenvalue problem (Boyd and Vanden-
berghe, 2004):

Lqopt = λ0 qopt, (3)

where λ0 is the smallest eigenvalue of L, a discrete Laplacian operator for the tetrahedral mesh (we used
uniform weights in our experiments). Using the inverse power method (Monahan, 2011), the eigenvector
qopt belonging to the smallest eigenvalue is easily and quite efficiently found. Note that this relaxation is
similar to the one used for globally optimal direction fields on surfaces by Knöppel et al. (2013).

5.2. Adding Constraints (1’)

For a boundary facet bi we need to add a constraint (1’), i.e. Rini = ei: the rotation in the corresponding
tetrahedron is fixed such that it aligns the facet’s normal with coordinate axis ei (which is chosen as the
closest axis, ei = e(f(ni)), based on the current state of f).

Let’s consider the case of ex being the closest axis to f(ni). How can we constrain qi to represent a
rotation that aligns ni with ex? This can be achieved by choosing qi = qni→ex , the rotation that aligns ni
with ex by rotating around the axis ni × ex. But choosing this specific qi is unnecessarily restrictive; there
is a whole subspace of aligning rotations: one can choose qi = qni→ex · qex(α), where qex(α) is a rotation
around the axis ex by any angle α, because no such rotation affects the alignment to ex.

qex(α) =
(

cos
α

2
, sin

α

2
, 0, 0

)T
(4)
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Since quaternion multiplication is linear in each quaternion we can express the product as qi = Qqex(α),
with Q ∈ R4×4 expressing multiplication from the left with qni→ex . Hence for normal alignment we end up
with the following four constraints on qi:

Q−1 qi =
(

cos
α

2
, sin

α

2
, 0, 0

)T
It suffices to impose the latter two of these four constraints. This is due to the fact that qi is going to

be normalized, and any unit quaternion fulfilling the latter two conditions, i.e. of the form (qw, qx, 0, 0), is
automatically of the required form

(
cos α2 , sin

α
2 , 0, 0

)
for some α.

In summary, constraining the quaternion qi as needed is identical to imposing the homogeneous linear
system Aqi = (0, 0)

T
with A ∈ R2×4 being the lower block of Q−1. Note that due to homogeneity the

constraints are unique and not affected by the sign ambiguity of quaternions, i.e. A (±qi) = ~0.
Alignment to different axes of E is done analogously.
Optimizing for the smoothest rotation field that aligns (a subset of) boundary facets’ normals with

prescribed axes can thus be done by augmenting the quadratic form with penalty terms:

qopt = min
‖q‖=1

∑
ij

wij ‖qi − qj‖2 + ω
ni
nb

∑
i∈∂M

‖Aiqi‖2 ,

with penalty factor ω, normalized by the numbers ni and nb of interior and boundary facets, respectively.
Due to homogeneity of the penalty terms the optimality conditions of the resulting optimization problem
are still an eigenvalue problem of the form (3) and can be efficiently solved to global optimality. Regarding
the choice of ω, see Figure 8.

Optionally, in each iteration, we can reconsider the axis choice of facets already constrained in previous
iterations, updating a constraint when another axis is actually closer. While this is very rarely the case, it
occasionally helps to cure individual outlier facets. We use this option in our experiments.

5.3. Optimizing (2a)

Once we have obtained Ri (read from the normalized quaternions qi) per tet using the quaternion field
optimization, we can consider the discretization of (2a):

f = min
f∗

∑
i

voli‖∇if∗ −Ri‖2. (5)

The minimum is obtained by solving a Poisson equation system:

Lf = GTV R (6)

with the Laplacian L = GTV G composed of the diagonal matrix of volumes, V = diag(voli), and the matrix
G encoding the gradient operator for piecewise-linear functions on a tetrahedral mesh. As this system
is invariant to global translations of f , to obtain a unique solution one vertex needs to be pinned down
arbitrarily, or – even simpler – a Tikhonov regularizer can be added (adding a small multiple of the identity
to the system matrix L; we use 10−6× its average eigenvalue, i.e. 1

n trace(L)).
Note that Ri appears on the right-hand side only. Therefore the system can be prefactored once, and then

solved by simple back-substitution every time the rotation field changes (i.e., everytime further constraints
are added by successive rounding).

6. Stage II: Hard Alignment

After stage I, we have a domain (the image ofM under the current f) that loosely resembles a polycube
domain (cf. Figure 2 center bottom); its boundary does not yet fully comply with constraints (1), though.

In a second stage, we therefore add these hard alignment constraints, as detailed next. Before adding
these, we apply the clean-up operations described by Gregson et al. (2011) to correct some typical per-facet
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axis choice configurations that are not compatible with a polycube domain or are geometrically unfavorable.
This includes merging patches (i.e. regions with constant axis choice) that have less than three neighbor
patches with a neighbor patch by changing their axis choice, and altering the axis choice inside strips
emanating from extremal turns of patch boundaries. In contrast to Gregson et al. (2011), we take cuts and
transitions into account in this process to properly handle models of higher genus (cf. Sec. 7). Success of
this clean-up procedure is not guaranteed; this is a general open challenge not specific to our method, as
discussed further in Sec. 10. If this procedure changes some axis assignments, the constrained rotation field
is re-solved before proceeding.

Note that alternatively, due to the intrinsic “pre-deformation” that stage I delivers, one could actually
take the obtained domain as input for any existing extrinsic polycube generation method, e.g. (He et al.,
2009; Gregson et al., 2011; Wan et al., 2011; Livesu et al., 2013; Yu et al., 2014; Huang et al., 2014; Fu et al.,
2016; Yang et al., 2019), and obtain a final polycube domain of “intrinsic quality”. The handling of cuts
and transitions (cf. Sec. 7) would pose additional challenges for such an approach, though.

6.1. Adding Constraints (1)

We setup constraints (1) with fixed discrete choices, inheriting those made for (1’) in the previous stage,
i.e. normal ni of boundary facet bi is supposed to be aligned with the oriented axis ei chosen in stage I (cf.
Section 5.2).

In the discrete setting, constraint (1) can be expressed per boundary facet by requiring the facet to lie
in one of the coordinate planes. Let (ui, vi, wi) be the vertices of boundary facet bi, which is supposed to
have normal-alignment with oriented axis ei. We require:

eTi (ui − vi) = 0
eTi (ui − wi) = 0

∀bi (7)

Furthermore, we need to require the polycube’s edges to be axis-aligned. In most cases this is implied by the
above constraints, namely when the boundary facets on both sides of the edge are aligned to different (un-
oriented) coordinate axes. This is because non-coplanar axis-aligned planes intersect in an axis-aligned line.
If both sides are aligned to the same axis e (e.g. to ex and −ex respectively,
see the slit in the inset for an example), however, we need to additionally
require for the edge (uj , vj):

eTj (uj − vj) = 0 ∀j ∈ J (8)

where ej is the axis different from e and most perpendicular to (ui − vi),
and J is the set of all tetrahedral mesh edges that lie on polycube edges
and require such an additional constraint due to the neighboring facets having same-axis alignment.

All these are linear equality constraints. Hence, the problem (6) s.t. (7) and (8) is continuous and convex,
thus easily solved (cf. Section 8 for more details).

7. Higher Genus

As outlined in Section 3.1, we should virtually cutM into one simply-connected chart and allow transi-
tions across the cuts, so as to enable full flexibility in cases where the genus of M is non-zero (cf. Fig. 3).

One previous approach considered cutting into a simply-connected chart (Fang et al., 2016). As stated
by the authors, their employed cutting strategy is limited; planar cuts are used, which are too restrictive for
complex geometries. In the following we describe a method for this task that is reliable on general shapes,
at the expense of commonly somewhat larger cuts.
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7.1. Determining Cuts

We start by computing a spanning tree in the dual graph of the tetrahedral mesh M, rooted at an
arbitrary tetrahedron. Then we (preliminarily) mark all interior facets whose dual edge is not part of the
spanning tree as cut facets. Obviously, these cutM into a topological ball. Cut facets which are adjacent to
an interior edge that is not adjacent to any other cut facet are then unmarked, as this does not change the
simply-connectedness. Intuitively, dangling parts of the cut surface are retracted. This is done iteratively
until no more facets can be unmarked. The remaining marked facets are the final cut facets. Figure 4
illustrates the cut facets on two examples. Interior edges adjacent to a cut facet are called cut edges.

7.2. Transition Functions

Across a cut facet cij between tetrahedra ti and tj the map f is related by a rigid transition function
φij (with rotational and translational component), i.e.

fj = φijfi on cij , (9)

where fi and fj is the (linear) restriction of f to tetrahedra ti and tj . For interior-regularity, these transitions
need to be cycle-consistent, i.e. need to compose to the identity around any interior tetrahedral mesh edge:

φ1 ◦ · · · ◦ φm = I, (10)

where the transitions φi are the oriented transitions across cut facets incident to a cut edge.
Most (often even all) interior cut edges have two adjacent cut facets. This implies that these facets

simply need to have the same transition φ – because they are involved in opposite orientation, φ and φ−1, in
the composition φ−1 ◦φ = I around the edge. If all cut edges have two adjacent cut facets this simply means
that each connected component of cut facets has a constant transition φ. Note that there are g connected
cut components in this case, where g is the genus of the mesh.

7.3. Determining Transitions

These transition constraints are taken into account as follows: at the end of stage I, when all discrete
degrees of freedom of (1’) have been fixed, we successively round the rotational component of the transition
φ across each cut facet to one of the 24 rotations from the cubical symmetry group. This cannot be done in
a trivial, greedy manner because we need to make sure that (10) remains feasible.

A cut edge incident to m > 2 cut facets is called a complex cut edge. A maximal connected component
of cut facets not involving a complex cut edge is called a cut patch, cf. Figure 4. Pick a complex cut edge,
determine the optimal rotation for one incident cut patch. Repeat this for all but one cut patches incident
at the edge. The rotation of the last incident cut patch is implied via (10) as φm = (φ1 ◦ · · · ◦φm−1)−1. Pick
a complex edge incident to one cut patch whose transition rotation is already determined and repeat this

Figure 3: Illustration of the benefit of using a chart-based
map definition. Top: with cuts and transitions, the torus
can unroll, implying a hexahedral mesh without any singular
corners. Bottom: without cuts and transitions, 16 corners
emerge inevitably.

Figure 4: Illustration of cut facets inside two (semi-opaque)
example models. In the left model there are four isolated cut
patches. In the right model, there is one isolated cut patch
(yellow) and three cut patches (red, blue, green) meeting at
a sequence of complex cut edges (black).
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Figure 5: Example results on models of genus 0. On these relatively simple models the intrinsic approach’s ability to “unroll”
curved parts does not play a major role; its insensitivity to the extrinsic orientation of the input, however, does show its benefit.

until no further complex cut edge has incident cut patches with undetermined transition rotations. As each
component of the cut surfaces is simply-connected, this greedy procedure does not lead to any inconsistencies
violating (10) by construction. For each remaining cut patch (those not incident to any complex cut edge),
simply determine the optimal rotation independently.

The translational components of φ are arbitrary, but subject to quantization, as described in the following.

8. Quantization

All variables that appear in constraints (7) or (8), as well as the translation variables of the cut transitions
φ need to be integral (or from sZ for a scale factor s that controls the sizing) to make the polycube domain
align properly with the regular cube tessellation of R3.

To this end, we again employ a greedy mixed integer rounding strategy (Bommes et al., 2010) to solve
(6) s.t. (7), (8), (9), (10). This rounding effectively quantizes the polycuboid domain to a proper polycube
domain. At a significantly higher computational cost, a Branch-and-Bound mixed integer solver could be
applied as well for improved result quality; the actual benefit of course would strongly depend on the chosen
target mesh resolution, for high-resolution meshes it can be minor.

While there are several specialized quantization approaches for polycubes (Cherchi et al., 2016; Protais
et al., 2020; Zhao et al., 2019) (with potential benefits in efficiency) note that they are not applicable to
non-zero genus domains with chart-atlas maps.

Finally, we apply the local injectivity promoting optimization from Garanzha et al. (2021) to reduce
occasional local inversions in the final map f , and can then extract the hexahedral mesh implied by this
polycube map, e.g. using the method of Lyon et al. (2016).

9. Results

We apply the intrinsic mixed-integer polycube method to a variety of models, of trivial topology or higher
genus, of technical or organic nature, of primitive or complex shape. For each case in the following we show
the resulting polycube domain f(M) and an implied hexahedral mesh. We apply no postprocess optimiza-
tion, simplification, straightening, padding, or smoothing, but show the immediately resulting hexahedral
meshes so as to provide a raw insight without obscuring clarity by mixing the effects of multiple algorithms.

Examples. Figure 5 shows examples of relatively simple genus 0 models. These are also handled well by
previous polycube generation and mapping approaches. Importantly, though, note that even for such models
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Figure 6: Example results on more complex models of genus 0. On these the intrinsic approach’s “unrolling” nature shows
its strength: spurious corners and edges in the polycube not called for by the intrinsic geometry (merely by the extrinsic
embedding) are avoided in numerous places.

a benefit over extrinsic methods is that the result and its quality does not depend on the orientation of the
input model; no matter how the input is rotated in space, exactly the same result is obtained.

Figure 6 shows examples of models (genus 0) where the intrinsic nature of our approach shows its strength
(beyond input orientation independence) and makes a major difference. Extrinsic approaches would create
undesirable spurious corners and edges, inducing additional irregular vertices and edges in the hex mesh in
places where they are not geometrically called for, causing unnecessary distortion. Our intrinsic approach
effectively “unrolls” and “untwists” certain parts of the models, avoiding such artificial irregularities.

Figure 7 shows examples of models with nontrivial topology. Here our use of a chart-atlas map (i.e.,
cuts with grid-preserving transitions, cf. Sec. 7) in combination with the intrinsic approach yields obvious
benefits, providing more degrees of freedom in terms of resulting mesh structure, while still remaining in
the space of interior-regular hexahedral meshes.

Parameters. In Figure 8 the effect of the choice of boundary alignment penalty ω (Sec. 5.2) is illustrated. A
very low value commonly causes unnecessary corners and edges to emerge. An overly high value can cause
small but desirable corners and edges to be missed, i.e. flattened out. The range [3, 30] can be considered
reasonable according to our experiments; we use a default of 10 as it provides a good general balance.

In Sec. 5 we mentioned how the “seed” of the successive process is chosen (at the globally most right-
angled edge). One may wonder how sensitive the process is to the choice of seed. Figure 9 illustrates this
on two examples. As can be seen, on the more technical model the resulting polycubes are structurally
identical for different seeds. On the more organic model, where the ideal polycube structure indeed is not
as evident, results differ structurally in some details, without being unreasonable. So, as could be expected,
there is some dependence, i.e. different results could be obtained by using other seeds than our proposed
choice, but we do not consider this a particularly purposeful or effective parameter.

Comparison. Above, we focused on a qualitative demonstration of the features of the proposed approach.
A quantitative comparison to other approaches could provide further insight, but actually is an intricate
matter. First of all, there is the question of what measures to actually look at. The number of unnecessary
polycube corners seems attractive, but necessity is hard to formalize. When, more indirectly, looking at
map distortion or implied hex mesh quality, results depend strongly on the employed post-processing (map
distortion optimization, hex shape optimization, untangling, padding, etc.), the chosen hex mesh resolution,
and the chosen map or mesh distortion measures. An insightful comparison would require an identical or
close choice of these circumstances. Unfortunately, results reported in previous works on polycube map
generation stem from largely varying setups, posing a challenge in this regard. In particular, differing
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Figure 7: Example results on models of higher genus. Here the beneficial effect of our method’s chart-atlas setting in synergy
with its intrinsic nature can be observed clearly in many cases. Notice in particular the unrolling of cylindrical, toroidal, and
knotted pieces. The cuts/transitions are visible as open interfaces in the polycube visualizations.

post-processes are employed (with or without map smoothing, with or without hex mesh smoothing, with or
without hex mesh padding/buffering), not rarely using external tools and not always spelling out all relevant
settings.

We therefore focus on the qualitative demonstration, and made our selection of models (Figs. 5 to 7)
such that there is overlap with multiple previous works in terms of shown examples, enabling the reader to
get a sense of the differences by visual comparison. With the above caveats in mind, we furthermore show
the distribution of various quality measures evaluated on the shown hexahedral meshes in unoptimized,
unpadded form in Figure 13, and make these raw meshes available as basis for future comparisons in varying
optimization and postprocessing setups.

As a concrete point of comparison to Fang et al. (2016) (the one previous
method that, like ours, is truly intrinsic) the inset shows our method’s result
on a sphere model – a reported hard failure case of this previous method,
which in contrast to our method starts from a frame field with interior sin-
gularities and does not always (regardless of the seeming simplicity of the
model) succeed in getting rid of them.

The proposed method is not particularly cheap computationally. Problems (2b) and (2a) need to be
solved repeatedly. However, note that the latter can be pre-factored once and then efficiently be reused. As
an example, using a 2018 commodity laptop, on the rightmost model in Figure 6 with 50K tetrahedra, stage

ω = 0.1 ω = 1 ω = 10

ω = 100

ω = 25

Figure 8: Effect of the choice of alignment penalty ω. Small values (� 10) cause spurious kinks in the polycube, whereas
overly large values (� 10) may flatten details (like the plane’s vertical rudder for ω = 100), especially when they smoothly
transition into their surround.
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Figure 9: Effect of the choice of seed. Each column shows three snapshots of stage I, top to bottom: early after the start, in
the middle, and at the very end. Gaps at handles in this visualization are due to the topology-induced cuts (Sec. 7).

I takes 418s (99.7% thereof spent in solving for the quaternion field qopt), stage II (including quantization)
takes 4.7s. Note that, in comparison, the previous intrinsic method of Fang et al. (2016) is reported to have
taken in the range of 10 to over 30 minutes on meshes of this size.

Certainly, the progressive nature of the approach, while beneficial on the one hand, can have less favorable
effects as well. Figure 10 shows examples where the result, while valid, has corners and edges in clearly sub-
optimal places in terms of geometric adequacy. In cases where these arise, they commonly appear towards
the end of the process of successively adding alignment constraints, in the regions constrained last. While
structurally the results are favorable in many cases, geometrically they are biased to some extent by the
approach’s progressive, greedy nature. It is an interesting avenue for future work to explore ways to combine
the general successive rounding principle with a more balanced procedural strategy, while retaining all the
benefits we observe. Note that hard feature curves (as opposed to weak or smooth features, Figure 11) are
commonly well respected even though no explicit measures are taken to that end.

10. Future Challenges

There are some major challenges for the future in the polycube-based hexahedral meshing context, which
our method as well as all related work is still facing. We discuss three key points in the following.

Figure 10: Two examples of models (of “polycube-
unfriendly” shape) where, towards the end of the successive
alignment process, corners end up into geometrically unfa-
vorable near-flat places.

Figure 11: The method commonly yields patches well
aligned with sharp features, as can be seen in Figures 5–9.
Weak feature curves (left, dashed) are not aligned to nat-
urally. At smooth (non-sharp) features, patch borders are
not always optimally centered on the feature (right, circled).
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(a) (b) (c) (d) (e)

Figure 12: Example result (b) after stage I where the label repair rules from Gregson et al. (2011) are insufficient: the red
triangular region is forced into degeneration under hard alignment constraints in stage II (a). Using a small manual label
modification (c), a valid stage II result (d) is obtainable, implying a hexahedral mesh (e).

Alignment Validity. No suitable generic necessary and sufficient conditions on the E-labeling (i.e. axis
assignment) of surface facets being compatible with a polycube are known, and no algorithm that can
produce polycube-compatible E-labelings in full generality is known. An incompatible E-labeling implies
that the problem in stage II ((6) s.t. (7), (8), (9), (10)) is infeasible (if we require local injectivity of the
map f) or necessarily leads to degeneracies in the result. Also the employed repair rules from Gregson
et al. (2011) are not always able to handle all situations adequately; Figure 12 shows one example. While
fault-tolerant mesh extraction procedures (Lyon et al., 2016) can gracefully deal with such cases in certain
situations, there is no guarantee of success. Previous work has often made use of the graph-based polycube
conditions presented by Eppstein and Mumford (2010). It was overlooked that these are formulated for
graphs, whereas an E-labeling constitutes an embedded graph (a graph with fixed edge ordering around
nodes), for which they are neither sufficient nor necessary; Sokolov and Ray (2015) demonstrated this
issue in a report. They proposed an alternative label adjustment procedure. This alternative, however, is
unfortunately not applicable to chart-atlas maps in cases of non-zero genus. This is due to its reliance on
the separability of the three dimensions – which are often intertwined by the chart transitions.

Map Injectivity. Guaranteeing (local) injectivity of a volumetric map such as f is a long-standing problem.
No automatic volumetric polycube mapping approach so far can provide full guarantees in this regard. One
can prevent inversions during the deformation process (Fu et al., 2016), but
then convergence to a state that complies with all constraints is at stake.
The static tessellation of the underlying tetrahedral mesh can be a major
obstacle as well. Like all previous work, we thus effectively make use of
a best effort approach. The inset shows an example where the result of
stage II has an inversion in the circled area; while a structurally valid hex
mesh can still be extracted in this example, it is very distorted at this spot.
Finding a guaranteed injective volumetric mapping technique is a key challenge for future work. Maybe the
robust volumetric cube map approach of Campen et al. (2016) can be generalized to polycube maps, or recent
promising optimization techniques (Garanzha et al., 2021) can be extended to provide strict guarantees.

Robust Quantization. The problem of quantizing the domain, such that
it aligns properly with the integer cube tessellation of R3 without locally
degenerating or inverting, is challenging as well – in particular when coarse
hexahedral meshes are desired: In the inset example some of the chair’s
rails and stretchers degenerate in the vertical direction under rounding to a
too coarse target resolution. Note that the gaps are due to chart transitions
(Section 7) and not a quantization artifact. Robust solutions to the 2D ver-
sion of the quantization problem have been presented (Campen et al., 2015;
Lyon et al., 2019, 2021), generalization to 3D is not straightforward but po-
tentially promising. Specialized polycube quantization techniques (Cherchi et al., 2016; Protais et al., 2020)
so far target the transition-free case only; generalizing them to the chart-atlas setting will be interesting.
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Figure 13: Log-scale histograms for • scaled Jacobian, • shape, and • stretch measures (Stimpson et al., 2007), collected over
the elements of all hex meshes from Figures 5–7. The raw result meshes are considered, without any postprocess optimization,
smoothing, or untangling. The relative amount of hexes with negative scaled Jacobian values is around 0.1% in these.
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