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QGP, boundary-aligned
→ distorted elements

QGP, boundary-aligned
→ additional singularities

Our free-boundary generalization

Fig. 1. When generating quad meshes for given surfaces, alignment of the mesh to the surface boundary may or may not be relevant, depending on the use
case. Enforcing boundary alignment when this is not necessary, needlessly leads to lower mesh quality, e.g. distorted elements (left) or additional irregular
vertices (center). Trimmed quad meshing with non-aligned boundaries (right), enabled by our free-boundary generalization of integer grid map quantization
(QGP, [Campen et al. 2015]), avoids these issues and yields meshes of higher quality in such cases.

The generation of quad meshes based on surface parametrization techniques

has proven to be a versatile approach. These techniques quantize an ini-

tial seamless parametrization so as to obtain an integer grid map imply-

ing a pure quad mesh. State-of-the-art methods following this approach

have to assume that the surface to be meshed either has no boundary, or

has a boundary which the resulting mesh is supposed to be aligned to. In

a variety of applications this is not desirable and non-boundary-aligned

meshes or grid-parametrizations are preferred. We thus present a technique

to robustly generate integer grid maps which are either boundary-aligned,

non-boundary-aligned, or partially boundary-aligned, just as required by

different applications. We thereby generalize previous work to this broader

setting. This enables the reliable generation of trimmed quad meshes with

partial elements along the boundary, preferable in various scenarios, from

tiled texturing over design and modeling to fabrication and architecture,

due to fewer constraints and hence higher overall mesh quality and other

benefits in terms of aesthetics and flexibility.
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1 INTRODUCTION
Integer grid maps have been introduced as a versatile tool for the

generation of high quality quad meshes based on surface parametri-

zation [Bommes et al. 2013a, 2009; Kälberer et al. 2007; Tong et al.

2006]. Focus has often been on surfaces without boundary, or sur-

faces with boundary where quad edges coincide with the boundary

everywhere (boundary-aligned quad meshes).
For a variety of applications, e.g. in simulation, texturing, struc-

tural and architectural design (cf. Section 2), mesh or grid map

alignment to the surface boundary is neither necessary nor bene-

ficial – rather, it brings in needless distortion: the mesh could be

of higher quality (in terms of structural regularity, element shape,

element sizing, feature or curvature alignment) if it was not forced

to align with the boundary.

Unfortunately, straightforward application of the state-of-the-art

parametrization quantization algorithm for the robust generation

of integer grid maps [Campen et al. 2015] in a scenario without or
with only partial, selective boundary alignment leads to a number

of critical issues:
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• The method relies on a motorcycle graph partition of the

surface into four-sided patches; without complete boundary

alignment, patches with more or less sides emerge (cf. Fig. 3).

• The method relies on these partition’s patches being simply-

connected, disk-homeomorphic; without complete boundary

alignment, they can be of complex topology (cf. Fig. 3).

• The method relies on a parametric separation test to prevent

degeneracies; without complete boundary alignment, this test

yields false results, causing the parametrization to degenerate

or distort in an uncontrolled manner.

1.1 Contribution
We present a generalized quantization method for global seamless

parametrization to generate integer grid maps without enforced
boundary alignment. It is generic in the sense that it supports free

boundaries, aligned boundaries, as well as mixed, selectively aligned

boundaries.

On a technical level, the key innovation lies in generalizations or

replacements of the core components of the quantized global para-

metrization (QGP) technique of [Campen et al. 2015]. Concretely,

we propose the following:

(1) a domain partitioning algorithm that guarantees simply con-

nected four-sided parametrically rectangular patches also

in the presence of arbitrary boundaries; partial patches are

completed through virtual extensions in order to streamline

subsequent algorithmic stages. (cf. Section 4)

(2) a technique to guarantee the parametric separation of critical

points (singularities, features) – crucial for non-degeneration

of the resulting quantized map – also in the presence of sur-

face boundaries and with respect to these, as well as the

non-degeneration of boundaries themselves. (cf. Section 5)

(3) a replacement of the final parametrization computation by a

robust constructive technique, drawing from ideas of [Myles

et al. 2014] but reducing complexity and generalizing to set-

tings with non-aligned boundaries. (cf. Section 6)

A more detailed, technical overview of these contributions is given

after a recap of QGP in Section 3.

We show the correctness of our generalization to the free-boundary

setting, and demonstrate the increased flexibility and consequent

advantages of non-aligned parametrizations and meshes.

2 RELATED WORK
Parametrization-based Quad Mesh Generation. The generation of

semi-structured quadrilateral meshes through surface parametriza-

tion has proven to be a versatile approach. It supports automatic

and interactive workflows as well as a multitude of local and global

constraints concerning the resulting mesh geometry and connectiv-

ity. This field of integer grid mapping has been an active research

topic for the past decade [Bommes et al. 2013a,b, 2009; Campen

and Kobbelt 2014; Ebke et al. 2013, 2014, 2016; Kälberer et al. 2007;

Kovacs et al. 2011; Liu et al. 2017; Marcias et al. 2013; Panozzo et al.

2014; Pietroni et al. 2011; Ray et al. 2010; Tong et al. 2006; Zhou et al.

2018]. It is based on finding a locally injective map from a given

surface to the plane such that it pulls back the regular integer grid

from the plane onto the surface, implying a quad mesh. To this end,

the map needs to be seamless [Mandad and Campen 2019; Myles

and Zorin 2012] and certain values (parametric positions of extraor-

dinary vertices, translational components of transitions) need to be

integers, defining an integer grid map [Bommes et al. 2013a].

The discrete optimization of the integer degrees of freedom of

the problem (also referred to as quantization of the map) is one of

the non-trivial challenges in this context. It has been addressed in

a variety of ways. For instance, a continuous relaxed version of

the problem can be optimized, followed by rounding/snapping to

nearest integers, either atomically [Kälberer et al. 2007] or incre-

mentally [Bommes et al. 2009; Nieser et al. 2011]. As this approach

is non-robust in general (the resulting integers may not admit any

non-degenerate integer grid map), advanced techniques have been

proposed as well. It was shown that a generic branch-and-bound

solver can be employed [Bommes et al. 2013a] for robustness. A

special purpose optimization strategy tailored to the problem and

guided by its geometric nature was subsequently proposed [Campen

et al. 2015]. It was shown to be faster by several orders of magnitude

in challenging cases. Unfortunately, this latter method does not

support parametrizations with non-aligned boundary.

After the integer degrees of freedom have been settled, an integer

grid map can be obtained via standard (non-convex) locally injective

parametrization optimization or, more robustly, using the final para-

metrization construction step of [Myles et al. 2014]. However, this

step likewise requires complete boundary alignment; non-aligned

boundaries are not supported.

Ourmethod ismost closely related to the latter twoworks [Campen

et al. 2015; Myles et al. 2014]; it can be viewed as a combination of

their respective robustness benefits in the context of a generalization

to the selective boundary alignment setting.

Other Quad Mesh Generation Paradigms. Our focus in this pa-

per is on meshing using integer grid maps. A large number of

other paradigms, with different properties, benefits, and limitations,

have been proposed for the generation of quadrilateral meshes. An

overview of the various approaches is given by a number of surveys

[Armstrong et al. 2015; Bommes et al. 2013b; Campen 2017; Owen

1998; Shimada 2006].

Worth noting particularly for the non-boundary-aligned setting

are the classes of methods based on local/periodic parametrization

[Huang et al. 2018; Jakob et al. 2015; Ray et al. 2006; Schertler et al.

2017] or on Morse-Smale complexes [Dong et al. 2006; Fang et al.

2018; Huang et al. 2008; Ling et al. 2014; Zhang et al. 2010]. These

naturally support the free-boundary setting – enforcing alignment

actually requires extra measures. Our work provides an enrichment

of the field by enabling integer grid maps to robustly and efficiently

be used in that setting as well. Due to their different properties and

specific benefits, additional use cases can be covered. For instance,

any kind of non-local constraints – like global mesh connectivity

constraints [Myles et al. 2010] and global holonomy prescription

[Crane et al. 2010] – are inherently difficult to handle and not sup-

ported by current methods based on periodic parametrization or the

Morse-Smale approach; precise control over extraordinary vertices

likewise is an issue. A further benefit due to the integer grid map
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based approach is the immediate availability of a continuous, locally

injective surface parametrization from the result, useful for applica-

tions beyond mesh generation. If other mesh generation techniques

are used, some additional efforts may be necessary to this end.

Motorcycle Graphs. A central component of QGP as well as of

our method is the parametric motorcycle graph, a variant of a con-

struction proposed by [Eppstein and Erickson 1999]. We extend it

in order to deal with free boundaries in a manner suitable for our

purpose. This concept has also been used for quad mesh partitioning

[Eppstein et al. 2008; Gunpinar et al. 2014], field-guided parametri-

zation [Myles et al. 2014], quad layout construction [Razafindrazaka

et al. 2015], and texturing [Schertler et al. 2018].

Applications of Non-Boundary-Aligned GridMaps andQuadMeshes.
One of the key application scenarios of quad meshes lies in the con-

text of the Finite Element Method. Numerous extensions of this

method to partial elements were proposed that facilitate dealing

with and benefiting from interfaces and boundaries cutting through

elements, e.g. X-FEM [Fries and Belytschko 2010; Nicolas et al. 1999],

IGFEM [Kedi et al. 2015], CBF-FEM [Gu et al. 2011]. The texturing

of objects (whether for virtual use or for physical fabrication) using

a tiled texture or structure templates relies on grid parametrizations

[Akleman et al. 2005]; alignment to the surface boundary can be

unnecessary and would only needlessly incur distortion. Also in

the context of architectural design, quad mesh structures without

boundary alignment are of relevance, cf., e.g., [Pottmann et al. 2008;

Zadravec et al. 2010]. For the reconstruction of surfaces on the basis

of trimmed versions of NURBS [Farin and Hansford 2000], NUR-

CCS, or other parametric representations, likewise a non-boundary-

aligned regular or semi-regular grid-like surface parametrization

builds the foundation.

3 OVERVIEW & RECAP
As our method is based on the high-level strategy of the quantized

global parametrization (QGP) algorithm of Campen et al. [2015], in

the following we summarize the this algorithm’s key aspects; we

refer to the original publication for further background. We then

explain the issues that prevent it from handling the non-boundary-

aligned setting and give an overview of our novel solutions.

3.1 Recap of QGP
Input to the method is a surface triangle mesh Mwith a (non-

quantized) seamless parametrizationF . Seamlessness in this context

refers to the parametrization being related by certain rigid transi-

tions across a cutgraph on the surface. The method then proceeds

in four main steps:

(1) Based on the input parametrization F a motorcycle graph

[Eppstein et al. 2008] is constructed on M by simultaneously

tracing iso-curves starting from all singular points of the

parametrization. These traces form the arcs of a graph that

partitions M into patches, cf. Fig. 2. In the case of the sur-

face being closed or the parametrization being aligned to its

boundary, the resulting partition is guaranteed to consist of

four-sided disk-homeomorphic patches only. Parametrically,

all these patches are rectangles.

Fig. 2. Exemplary motorcycle graph on a closed surface. Arcs are depicted
in black, extraordinary nodes in red (degree 3) and blue (degree 5).

(2) A quantization, i.e. an assignment of integer lengths to all mo-

torcycle graph arcs, is constructed. It needs to be consistent

(each patch needs to remain rectangular under these newly

assigned lengths) while resembling the initial parametric arc

lengths as closely as possible. It is constructed through an it-

erative greedy strategy that incrementally optimizes towards

this goal while maintaining consistency throughout. The

atomic operations that are used for consistency-preserving

modification consist of equally increasing or decreasing the

assigned lengths of each arc crossed by an elementary circuit

of the dual graph of the partition.

(3) Besides consistency, another property is required of the quan-

tization: certain critical points (singular points, feature points,

boundary points) must be parametrically separated, i.e. their

distance in terms of the newly assigned integer arc lengths

must be greater than zero. Otherwise the quantization would

imply degeneracies or inversions in the final integer grid

map. Hence, after an initial phase where all arcs are assigned

strictly positive integers, all further tentative modifications

are only performed after passing a separation-preservation

test concerning all involved critical points.

(4) Finally, a new parametrization ofM is constructed, constrain-

ing parametric distances between pairs of critical points to

the integer values given by the quantization (and one such

point to the origin), yielding the final integer grid map.

3.2 Boundary Issues
The definition of quantization consistency, the definition of the

dual graph, the separation-preservation test, as well as the final

re-parametrization – these key ingredients of the above algorithm

all rely on the partition’s patches being simply connected four-sided

rectangular patches:

Definition 3.1 (Rectangular Patch). A patch of a surface embedded

graph, bounded by its arcs and/or the surface boundary, is called

rectangular if it (modulo transitions across cuts) is mapped by the

parametrization F bijectively onto an axis-aligned rectangular do-

main in the plane.
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While with complete boundary-alignment the motorcycle graph

is guaranteed to yield rectangular patches only [Eppstein et al. 2008],

this fundamental assumption is violated when the parametrization is

not aligned with the surface’s boundary. In Figure 3a an exemplary

motorcycle graph (with two nodes and eight arcs) on a surface

that was parametrized without boundary alignment is depicted; the

patches in this case are merely sub-rectangular :

Definition 3.2 (Sub-Rectangular Patch). A simply-connected patch

is called sub-rectangular if it (modulo transitions) is mapped by the

parametrization F bijectively onto a domain Ω in the plane, and

there is an axis-aligned rectangle R such that Ω ⊆ R and ∂aΩ ⊆ ∂R,
where ∂aΩ is the part of the patch’s boundary formed by graph arcs

rather than the surface boundary.

The occurrence of such incomplete patches (and the related fact

that the motorcycle graph forms multiple disconnected components,

like in Figure 3a,) hinders the application of the QGP method; the

dual graph is no longer well-defined, the consistency conditions

cannot be formulated, and the separation test cannot be executed.

As depicted in Figures 3b and 3c, the situation can be even worse.

Patches which are not four-sided, which are not simply connected,

or which are more generally not rectangular or sub-rectangular can

occur. These may arise even if the motorcycle graph does not even

interact with the boundary, as shown in Figure 3b.

(a) (b) (c)

Fig. 3. Examples of input surfaces with free (non-aligned) boundary leading
to motorcycle graphs (black arcs, red and blue nodes) with incomplete or
otherwise complex and problematic patches (light blue).

3.2.1 Removing Boundaries? Observing these problems, a simple

solution may come to mind: Why not simply fill all boundary loops

using suitable surface patches to obtain a closed mesh, compute

an integer grid map on the closed mesh, and remove the fillings

in the end? While this indeed may be a viable option for certain

simple local holes, this approach has many drawbacks. Not only

is finding geometrically as well as topologically suitable patches

a difficult task in general; closing all boundaries in such a way

that the newly created geometry does not negatively affect and

bias the parametrization result within the original surface is even

more involved. Furthermore, the mere filling of a hole, regardless of

chosen geometry, already reduces the degrees of freedom otherwise

available in a mesh with boundary. The mesh in

the inset for example could not be generated by a

temporary hole filling approach due to the unequal

number of quad strips emerging from the hole, top

and bottom.

1. Surface Partitioning (Section 4)

Motorcycle Tracing

Virtual Patch Completion

2. Quantization (Section 5)

Greedy Optimization

Boundary-aware Separation Test

3. Robust Re-Parametrization (Section 6)

Motorcycle Graph Re-Embedding

Patch Parametrization via Tutte Embedding

Global Parametrization Optimization via Newton

Fig. 4. Overview of the three algorithmic stages of our method.

3.3 Outline
We deal with the issues that are due to non-aligned boundaries, and

enable exploiting all degrees of freedom, in the following manner –

ultimately resulting in the algorithm summarized in Figure 4.

Partitioning. In Section 4 we present a modification of the parti-

tion construction based on the motorcycle graph such that even in

the presence of non-aligned boundaries all patches are guaranteed

to be (at least) sub-rectangular. To this end, further arcs are added

to the graph, generated by traces emanating from carefully chosen

additional seed points. We then describe how virtual extensions

can be added to sub-rectangular patches in order to make them

virtually rectangular. This enables us to streamline the subsequent

algorithmic stages, avoiding the need for numerous instances of

special case handling for different types of incomplete patches.

Quantization. In Section 5 we introduce a parametric separation

test suitable for the free boundary as well as the aligned boundary

setting. Challenges that we need to address in this context are due

to the virtual patch extensions and due to the additional need to

prevent the collapse of free boundaries – issues that do not occur in

the classical case of entirely aligned boundaries. With this general-

ized test available, thanks to our virtual patch completion strategy

the core routine of QGP that incrementally constructs consistent

quantizations can then be employed with only minor adjustments.

Re-Parametrization. In Section 6 we describe a robust procedure

to obtain a global integer grid map in form of a locally injective para-

metrization, exactly adhering to the determined valid quantization.

This is achieved by constructing guaranteed bijective discrete har-

monic parametrizations for each individual patch of the motorcycle

graph. These parametrizations are over rectangular domains with

size given by the assigned integer arc lengths. By fixing the rectangle

boundary map compatibly between adjacent patches, their union
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Fig. 5. The 13 configurations of patches (all of them sub-rectangular) that can occur in our free-boundary motorcycle graph. Arcs are depicted in black,
boundary segments in red. The depicted shape of the red boundary segments is exemplary and can vary – to some extent, as long as it does not form any
concave peaks in the interior.

is guaranteed to form a global integer grid map (which can serve

as valid initialization for further distortion optimization). To apply

this strategy in our setting we need to overcome two challenges:

There may be (and commonly are) arcs of quantized length zero

and patches of quantized area zero, and there are sub-rectangular

patches at non-aligned boundaries. We re-embed the motorcycle

graph such that zero-arcs have length zero and zero-patches have

area zero on the surface; only in this way is a non-degenerate map-

ping possible. We describe an approach to efficiently support free

boundaries in this re-embedding process; straightforward gener-

alization of a previous zero-chain collapse technique [Myles et al.

2014] would lead to numerous special cases requiring separate treat-

ment, so we instead break this global operation down into simple

local elementary operators. Finally, the problem of sub-rectangular

mapping can be reduced to that of rectangular mapping through

virtual arc realization along the surface boundary.

4 PARTITIONING
The motorcycle graph T (cf. Figure 2) consists of nodes ni ∈ N and

arcs ai ∈ A. Every arc consists of two directed, opposite halfarcs

hi ∈ H. Such a surface-embedded graph partitions the surface

M into patches pi ∈ P. In QGP, it is constructed with nodes for

every singular point of a seamless input parametrization F . If it does

not contain any singular point, a (regular) node is placed arbitrarily

to avoid special cases. The arcs are created by tracing particles

(motorcycles) onM from these seed nodes along iso-lines into all

incident parametric directions. When a motorcycle hits the trace

of another, it stops and an additional node (a T-joint) is created at

the corresponding location onM . In the end, the trace segments

between nodes form the motorcycle graph’s arcs.

Since motorcycle traces follow parametric iso-lines, by construc-

tion the parametric angle between two consecutive arcs at a node

can only be π/2 or π . Thus, the motorcycle graph forms a non-

conforming quadrilateral mesh, i.e. a T-mesh. We call halfarcs point-

ing into π/2-angles corners and the others flat. Since patches cannot
contain singularities in their interior by construction, in a boundary-

aligned setting there are exactly four corner halfarcs per patch.

Thus, the halfarcs hi of each patch pi can consistently be assigned a

parametric direction d(hi ) ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)}, such that

every flat halfarc is followed by a halfarc with the same direction,

and every corner halfarc is followed by a halfarc with a direction

rotated counter-clockwise by π/2.

4.1 Free-Boundary Motorcycle Graph
As discussed in Section 3.2, in the presence of free boundaries the

graph’s patches may have a variety of complex shapes, cf. Figure 3.

The goal of this section is to modify the motorcycle graph con-

struction such that all generated patches are rectangular or sub-

rectangular (cf. Definition 3.2).

Our key observation is that all complex patches can be turned into

simple, sub-rectangular patches by splitting them into smaller ones.

This can be achieved elegantly as part of the graph construction

itself, by introducing additional seed points for motorcycles, leading

to additional traces that split patches. The selection of additional

seed points is based on local extrema of the input parametrization

F ’s parameter functions u and v . As it is a chart-based parametriza-

tion with transitions across cuts, in the following we always assume

working in local chart coordinates, with transitions implicitly ap-

plied without explicit mention.

Definition 4.1 (Peak Point). A point on the boundary curve ∂M
in parametric space where u or v is a strict local extremum is called

a u-peak or v-peak, respectively. If it is non-strictly extremal, it is

only considered a peak if the value is lower/higher at least on one

side; this avoids entire ranges of ∂M where u or v happen to be

constant to be considered peak – only their end points.

Note that if the boundary is non-smooth (as in our piecewise

linear mesh setting) a point can be both a u-peak and a v-peak.
We call a peak point convex or concave depending on whether

the parametric image of the surfaceM is locally convex or concave

at that point.

Definition 4.2 (Free-Boundary Motorcycle Graph). The free bound-
ary motorcycle graph is defined and generated just as the (iso-line-

based) motorcycle graph [Campen et al. 2015; Eppstein et al. 2008],

with singular and feature points as seed points, except that addi-

tional seed points are taken into account to spawn motorcycles: the

concave peak points. Au-peak spawns a motorcycle in ±u-direction,
a v-peak in ±v-direction.

The following proposition asserts that this modification is suffi-

cient to guarantee sub-rectangular patches. In fact, only 13 types of

Fig. 6. Left: standard motorcycle graph. Right: our extended free-boundary
motorcycle graph, with all patches being sub-rectangular. Notice that on the
left, by contrast, patches are topologically and geometrically more complex.
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(a) (b) (c) (d)

Fig. 7. Virtual arcs (dashed) are added along each red segment to complete
sub-rectangular patches that are cut by the surface boundary (red). Four
local situations, with n ∈ {1, 2, 3, 4} cut off corners, can occur; they are
treated by adding n + 1 virtual arcs and n virtual nodes.

patches (up to symmetry), as depicted in Figure 5, can occur in the

free-boundary motorcycle graph. Key to this result is the observa-

tion that, due to tracing from concave peak points, no single patch

can contain a piece of surface boundary bending outwards by more

than π/2 parametrically.

Proposition 4.1 (Sub-Rectangular Patches Only). Each patch
of the free-boundary motorcycle graph is sub-rectangular.

A proof is given in Appendix A.1. In Figure 6 the standard mo-

torcycle graph and our free-boundary motorcycle graph are shown

side-by-side on an example surface.

4.2 Virtual Patch Completion
In order to avoid the need for special case treatment for the various

types of incomplete patches, we virtually complete them through the

integration of virtual nodes and virtual arcs. Due to the property of

all patches being sub-rectangular in the free-boundary motorcycle

graph, each patch, regardless of type, can always be completed to

a virtual rectangle. Note that the following construction is purely

abstract, combinatorial; we do not associate geometry to virtual

arcs.

Considering the different types of sub-rectangular patches de-

picted in Figure 5 one observes that a red segment (i.e. part of the

surface boundary ∂M ) can cut off a piece of the underlying rec-

tangle that contains either one, two, three, or four adjacent corners.

For each red segment, this number n ∈ {1, 2, 3, 4} can be deduced

from the relative parametric orientation of the adjacent black seg-

ments, corresponding to arcs a and b (not necessarily distinct) that

were traced from or into the surface boundary ∂M at neighboring

locations.

We insert a sequence of n + 1 virtual arcs (with n intermediate

virtual nodes) between a and b. The first and last one are assigned

the parametric direction of a and b, respectively, and the direction of

each other virtual arc in between is defined by rotating the previous

virtual arc’s direction by π/2. Figure 7 shows examples for all four

relative orientations of a and b.
As this construction can be performed for every red segment of a

sub-rectangular patch, this result follows immediately:

Proposition 4.2 ((Virtually) Rectangular Patches Only).

The free-boundary motorcycle graph extended by virtual arcs for each
red segment consists of rectangular patches only.

This virtual extension thus allows for streamlined processing

in the subsequent steps in our pipeline, where we can rely on a

partition graph structure consisting of (virtual) rectangles only. Fig-

ure 8 illustrates the result of our free-boundary motorcycle graph

extended by virtual arcs on the surfaces from Figure 3.

5 QUANTIZATION
For the final global parametrization to be an integer grid map (as

required in particular for quad mesh generation), certain surface

points need to be mapped to integer (u,v)-coordinates ∈ Z2
in

the plane. These points are 1) the singularities (corresponding to

extraordinary vertices in the implied quad mesh) and 2) feature

points (any kind of user-prescribed surface points where ultimately

a quad mesh vertex shall be located). We collectively refer to these

as critical points in the following.

Furthermore, one may want to require certain curves on the

surface, for instance sharp feature curves or boundary curves, to

be matched by quad mesh edges. To this end one of the two (u,v)-
coordinates needs to be constant and integer along the curve. Such

curves we refer to as critical curves.
Quantization in this context refers to the process of deciding

which integers each critical entity shall be mapped to. As discussed

in detail before [Bommes et al. 2013a; Campen et al. 2015], the chal-

lenge lies in making this decision in such a way that a corresponding

non-degenerate integer grid map even exists. In particular, the quan-

tization must ensure the parametric separation of critical entities.

Otherwise, the map is forced to degenerate or be non-injective. Con-

cretely, in the subsequent process of integer grid map construction,

described in Section 6, any two non-separated nodes will (and have

to) be collapsed onto a common point on the surface, violating the

intention of two specific (distinct) surface points receiving integer

parameters in the final integer grid map. A quantization is thus

called valid if it separates all critical entities.

Campen et al. [2015] presented the QGP algorithm to efficiently

compute such a valid quantization for the boundary-aligned case

in the form q : A → N, i.e. by assigning a non-negative integer

Fig. 8. The examples of Figure 3, however, with additional arcs due to peak
point tracing and extended by virtual arcs (dotted).
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length q(ai ) to each arc ai of the T-mesh T formed by the mo-

torcycle graph. These integer values represent relative parametric

differences rather than absolute parameters for the critical entities.

In a first stage, all arcs ai are assigned, in a consistent (rectangu-

larity preserving) manner, a strictly positive integer length. This

trivially implies separation of all critical entities, thus validity. In a

second stage, these integer arc lengths are iteratively updated in a

consistency-preserving manner so as to match the actual input para-

metric arc lengths as closely as possible. To this end, in this stage,

zero arc lengths may be preferable. For each tentative update thus

a separation-preservation test is performed to ensure the updated

quantization remains valid.

Thanks to our constructions described in Section 4, yielding a

purely rectangular T-mesh also in the free-boundary setting, we

are able to adapt the integer assignment technique of QGP. This

requires two adjustments which we discuss in the following: an

assignment of suitable target lengths to virtual arcs (Section 5.1), and

a modification and generalization of the separation test (Section 5.2),

as it natively would yield false negatives and false positives in the

free-boundary setting, causing invalid or low-quality quantizations.

5.1 Virtual Arc Target Length
The quantization minimizes the differences between the assigned

integer length q and the target length of an arc. For a regular arc

the target length is defined as its parametric length in the input

parametrization F . Since virtual arcs are abstract, their target length

needs to be defined differently.

We exploit the sub-rectangularity of all patches, and define target

lengths for virtual arcs based on their length in the parametric

rectangular completion. In this way, no sizing bias is introduced by

the virtual patch extensions. Note that the rectangular completion

is fully determined only in the case depicted in Figure 7a. In the

other cases there are degrees of freedom. We consider as natural

completion the smallest of all completing rectangles. In Figure 7

slightly larger rectangles are depicted for these cases for clarity, as

the length of some of the arcs can be zero in the natural completion,

depending on the shape of the red segments.

5.2 Separation Test
By construction of the motorcycle graph, each critical point coin-

cides with a node of the T-mesh, and each critical curve coincides

with an arc. We refer to such nodes and arcs as critical in the fol-

lowing.

If q(a) > 0 for each arc a, critical nodes and arcs are trivially

separated with respect to the assigned integer parameters. To enable

quantizations of high quality (not every single patch of the T-mesh

should imply one or more quads in the integer grid map), however,

also q(a) = 0 is permitted; in this case separation is not trivial but

must be checked for explicitly.

Two nodes are not separated iff there exists a weakly-u- or weakly-
v-monotone arc path of (assigned) length (0, 0) between them, as

discussed by [Campen et al. 2015]. This property – that is due to the

parametrically convex (rectangular) nature of the surface partition

by the T-mesh – enables a relatively simple and efficient separation

test using a local graph search in T, starting from critical nodes.

Essentially, one needs to search only along those arcs that keep one

of the two dimensions of the accumulated integer (u,v)-distance
from the start node at zero, and which do not unnecessarily bring

the other further away from zero. If any critical node or any point

on a critical arc is reached with an accumulated distance of (0, 0),
non-separation is reported (and the tentative quantization update

that caused this is rejected). If no such node or point is reached from

any critical node, separation is certified.

As due to our modifications the T-mesh has only (virtually) rect-

angular patches in the free-boundary setting as well, thus enjoys

the same key property, the same principle can be applied.

A challenge, however, is posed by the potential non-alignedness

of (parts of) the surface boundary in our case. One generally needs

to ensure that

• critical entities are separated from the surface boundary,

• different parts of the surface boundary are separatedmutually,

• entire boundary loops do not parametrically degenerate to a

point, i.e. each boundary loop contains two points that are

separated.

If the entire surface boundary is an aligned boundary, all of the

above is easily ensured simply by treating the boundary curves as

critical curves, thus the arcs along the boundary as critical arcs, and

boundary corners as critical nodes – as done in QGP. In our more

general setting, a different treatment is required at non-aligned

boundaries as there are no arcs directly aligned with the boundary.

5.2.1 Free-Boundary Separation. First of all, we treat the virtual
arcs as critical. Intuitively, while we have illustrated the abstract

virtual arcs as lying outside the surface in Figure 8, we are free

to (preliminarily) realize them directly along the boundary curve

(cf. Section 6.1.1). They hence serve as a suitable proxy for our

purpose of separation testing with respect to the boundary.

Unfortunately, this very simple modification is insufficient. The

separation test described above, based on path searching in the

motorcycle graph starting from critical nodes, tests for separation

among critical nodes as well as between critical nodes and critical

arcs – not among critical arcs. Hence, two parts of the boundary

could be non-separated in a given quantization without the separa-

tion test noticing this.

Onemight expect other critical arcs (feature arcs, aligned-boundary

arcs) to have the same issue. However, (sequences of) feature or

boundary arcs have incident critical nodes (feature or boundary

corner nodes) in [Campen et al. 2015]. In this case, if two arcs are

non-separated, so is one of their incident nodes (due to parametric

straightness of the arcs) – which is covered by the separation test.

We could easily solve our issue at non-aligned boundaries in an

analogous manner: treat all boundary nodes, i.e. nodes incident to

virtual arcs, as critical. This leads to the following definition:

Definition 5.1 (Strong Separation). A quantization is called strongly
separating if it passes the separation test with boundary nodes and

virtual arcs considered critical entities.

This simple solution, however, is unnecessarily strict. The strong

separation test is conservative – in the sense that it precludes certain

quantizations (relevant for high quality results) that admit valid

integer grid maps. The issue is as follows: boundary nodes which
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are not critical per se (i.e. not prescribed feature nodes) do not

represent specific isolated points on the surface which are to be

parametrized in a specific (integer) way. In-

stead, they are part of a curve (the surface

boundary) and are free to move (to be re-

located, cf. Section 6.1) along this curve.

Thus separation along the boundary is not

required – but inherently imposed by the

notion of strong separation. This is illus-

trated in the inset: for strong separation, of

the vertical arcs, only arc a may be quan-

tized to zero; seven of the eight patches de-

picted need to be quantized to a height of at

least 1 each (i.e. a total height of 7) to pair-

wise separate the depicted boundary nodes

– no matter how parametrically small the

depicted surface region and how beneficial

a zero-assignment thus would be.

We thus do not consider boundary nodes critical (unless they are

prescribed feature nodes), but we still add them to the set of starting

sources for the separation test’s search process. If a search that

started from a non-critical boundary node source, however, reaches a

point on the boundary (a boundary node or virtual arc) with distance

(0, 0), this is not to be considered a non-separated configuration if
there is one path of zero arcs along the surface boundary between

this point and the source. In the above inset (where virtual arcs are

not depicted), all patches could thus be quantized to zero height (if

desired) as long as their virtual arcs are quantized to zero as well.

Note that we must specifically require one path of zero-arcs along

the boundary. If there are two, an entire boundary loop is formed by

zero-arcs. This would imply parametric degeneration of an entire

surface boundary component to a point, which must be prevented.

Implementation Note. In QGP it suffices to start the separation

test’s graph search in forward direction only. This is because all

critical points have traces in all parametric directions. Here we have

additional source nodes (boundary nodes) for which this is not the

case in general. One thus needs to include search paths whose first

edge is not in forward direction, but pointing sideways, left or right.

6 ROBUST RE-PARAMETRIZATION
A given valid quantization implies all integer degrees of freedom

of an integer grid map, i.e. the positions of the singularities and

the transition functions across seams (between parameter charts).

In order to compute the final integral parametrization Campen et

al. [2015] suggest solving an accordingly constrained optimization

problem. Due to non-convexity, even though it is guaranteed that a

non-degenerate locally injective (flip-free) parametrization adher-

ing to the prescribed integers exists for the input surface, it is not

guaranteed that the solver will find such a solution. In fact, it may

even be impossible to find a solution for the given triangulation

without refinement.

In order to guarantee obtaining the desired integer grid map,

we therefore instead make use of a different approach. We exploit

the surface partition into disk-topology patches described by the

embedded T-mesh, and construct an initial global integer grid map

out of individual per-patch parametrizations (Section 6.2). This is a

common approach, used before for conforming [Dong et al. 2006;

Khodakovsky et al. 2003] as well as non-conforming quadrilateral

partitions [Myles et al. 2014]. This initial map can then serve as valid

starting point for further (local injectivity preserving and integer

constrained) optimization.

However, this strategy only works if for each T-mesh face, a bijec-

tive map between their surface patch and their desired parameter

rectangle exists. To this end, if a patch has been quantized to a

parametric rectangle of area zero, the patch needs to have zero area

on the surface as well – otherwise, the map will necessarily be non-

injective. Therefore, we are going to show in Section 6.1 how all

patches prescribed to a parametric area of zero by the quantization

can be re-embedded onto zero area regions on the input surface.

6.1 T-Mesh Re-Embedding
By construction, an initial embedding of regular arcs onto the input

surface is given by the traced motorcycle paths. The fact that with

this embedding triangles can span more than one patch complicates

the computation of individual patch parametrizations that are con-

sistent with their neighbors. One approach to resolve this is the

integration of the arcs into the input mesh by splitting elements

[Myles et al. 2014]. Downsides of this approach are the increase in

mesh complexity and the potentially bad triangle shapes.

We therefore prefer a method that modifies the input mesh only

when necessary. Instead of arc integration through mesh splitting,

we propose to snap all nodes and arcs onto nearby vertices and

edges, respectively (cf. Figure 9a�b). Only if there are not enough

vertices or edges is the mesh split to admit a one-to-one mapping

between T-mesh and triangle mesh elements.

6.1.1 Virtual Arc Embedding. Virtual nodes, for which so far no

embedding existed, are distributed onto boundary vertices between

the two adjacent boundary nodes, and virtual arcs are embedded

onto the boundary edges in between (cf. Figure 9a�b). Intuitively,

this corresponds to effectively stretching the sub-rectangular patch

onto its completing rectangle in parameter space. This embedding is

only preliminary; it simplifies subsequent algorithmic steps. During

final optimization (cf. Section 6.2) this sub-optimal initial embedding

is optimized, as illustrated in Figure 10.

While all arcs being embedded onto edges of the triangle mesh

simplifies the computation of the individual patch parametrizations

one problem may still remain. The parametric domain of a patch

as defined by the quantization may be degenerate, i.e. the patch

may need to be mapped onto a parametric line or point. If the patch

itself is not also embedded as a line or point on the triangle mesh,

respectively, the map is bound to degenerate. We therefore further

adjust the T-mesh embedding such that all these zero-patches are
re-embedded onto lines or points. We make use of the following

definitions.

Definition 6.1 (Border Arc/Node). An arc or a node (virtual or

non-virtual) is border if it is embedded in the surface boundary.

Definition 6.2 (Collapsible Arc). A zero-arc a is collapsible in di-

rection from its incident node n0 to its incident node n1 if n0 is

non-critical, and either a is border or n0 is non-border.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 9. Re-embedding of the Free-Boundary Motorcycle Graph. Numbers
correspond to quantized arc lengths. Blue circular arcs indicate patch cor-
ners, red circular arcs double corners (two corners collapsed). (a): The initial
embedding as traced during construction. (b): Nodes and arcs are snapped
onto vertices and edges, virtual nodes and arcs are mapped onto the bound-
ary. (c)-(h): The zero-patch (blue) is re-embedded onto a line via iterative
zero-arc collapses (c,e,f,g), arc insertions (d,e) and simple zero-patch col-
lapses (g,h).

The re-embedding is performed by simply applying the following

three local operators until none can be applied anymore (cf. Figure 9

for an example).

(1) Zero-arc collapse. Let a be an arc collapsible from n0 to n1. Its
collapse changes the T-mesh embedding in the following way

(cf. Figure 9b�c): n0 is embedded onto n1, pulling its incident
arcs with it, i.e. their embedding path is adjusted such that

they connect to n0 at its new position. Arc a is embedded

onto a single point (coincident with the nodes n0 and n1). If
n0 now lies at a critical point, it is subsequently considered

critical. Notice that the restriction to collapsible arcs ensures

that critical nodes are not moved, and that border nodes are

only moved along the border.

(2) Non-simple zero-patch split. A zero-patch is non-simple if

more than two non-zero arcs are involved, i.e. if there are flat

arcs, corresponding to T-joints along the patch’s non-zero

sides. The T-joints are extended through the patch to the

corresponding point on the opposite side by inserting a new

zero-arc (cf. Figure 9d�e). This means, if there is a node on

the opposite side which has the same quantized distance to

either end of the zero-patch, the new arc is connected to this

node; otherwise a new node is inserted by splitting an arc at

the corresponding location (and marked as critical, if the split

arc is critical). The inserted zero-arcs can then be collapsed

by operator (1). Note that this operation splits a non-simple

zero-patch into several simple zero-patches.

(3) Simple zero-patch collapse. A zero-patch is simple if exactly

two non-zero arcs are involved. A simple zero-patch is easily

collapsed (after its zero-arcs have been collapsed) by replacing

the embedding of one non-zero arc with the embedding of the

other one (cf. Figure 9g�h). Note that a zero-patch without

any non-zero arc (i.e. one that is supposed to be embedded

onto a single point rather than a curve) is already handled by

the zero-arc collapse.

Operator Implementation. In operators (1) and (2) edge paths to

(re-)embed arcs are determined simply using Dijkstra’s shortest path

algorithm between the respective two vertices on the triangle mesh.

The graph search is restricted to not intersect (cross or touch) other

arcs in order to preserve the topology of the embedded T-mesh.

While this restriction may preclude the existence of any edge path

between two vertices to be connected (if the triangulation of the

region between the other arcs is not 3-connected), this is easily

resolved by refinement with a few edge splits.

If a border arc is collapsed from border node n0 to border node n1,
the other border arc b incident to n0 is re-embedded onto the joint

edge paths of b and a, such that the surface boundary remains

covered by arcs. For the same reason, when a simple zero-patch is

collapsed where one of the two non-zero arcs is border, we change

the embedding of the non-border arc. With this strategy it is ensured

that the re-embedded T-mesh still covers the entire surface: Since

border nodes are only collapsed along the boundary (not into the

surface interior), the T-mesh boundary remains coincident with the

surface (i.e. triangle mesh) boundary.

Proposition 6.1. Given a T-mesh with a quantization satisfying
the free-boundary separation test (Section 5.2.1), it can be re-embedded
such that each zero-arc is embedded onto a point.

A proof is given in Appendix A.3. As, in contrast to the zero-arc

collapse, there is no restriction for the applicability of the zero-

patch operators (other than the zero-arcs being collapsed already),

it follows readily:

Corollary 6.3. All zero-patches of a quantization satisfying the
free-boundary separation test (Section 5.2.1) can be collapsed.

We are thus able to obtain a re-embedding of the T-mesh such that

1) the entire surface remains covered, 2) all zero-arcs are embedded

onto points, and 3) all zero-patches are embedded onto curves (or

points). The integer gridmap initialization discussed in the following

can thus be applied.

A conceptually very similar re-embedding strategy was employed

by [Myles et al. 2014]. Key differences of our approach are:

• We refine the underlying triangle mesh only if necessary,

instead of generally.

• Discrete Dijkstra’s algorithm for arc re-routing, instead of

continuous path tracing.

• Local operators concerning individual zero-patches, instead

of entire zero-chains.

• Support for non-aligned boundaries, instead of requiring com-

plete alignment.
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(a) (b) (c) (d) (e)

Fig. 10. Re-parametrization overview. (a) T-mesh arcs (non-virtual and virtual) with their assigned quantized lengths; red indicates zero lengths. (b) T-mesh
embedded onto edges of the input mesh. (c) T-mesh re-embedded by collapsing zero-arcs (red). (d) Each patch mapped onto axis-aligned rectangular domains
for an initial, seamless, guaranteed locally-injective, integer-grid parametrization. (e) During final optimization patches can transform into arbitrary shapes in
parameter space, reducing the distortion of the initial embedding.

6.2 Re-Parametrization
The desired integer grid map can now be computed from the re-

embedded T-mesh with assigned arc lengths: A bijective flip-free

parametrization for an individual patch is easily computed as a

convex combination map [Tutte 1963], constraining its boundary

vertices onto the parametric axis-aligned rectangle prescribed by

the quantization. By fixing one of the patch’s nodes to the origin

(or any integer position), all other nodes get mapped onto integer

positions, ensuring that all singular vertices, feature vertices, and

feature lines are mapped onto integer points and lines, respectively.

The union of all patch parametrizations then forms an integer

grid map since the implied transition functions across triangle edges

are grid automorphisms: at triangle mesh edges on the boundary

between two patches, both edge images are on an integer grid line

(thus only rotations about multiples of π/2 are possibly involved) and
have the same length (due to the corresponding arc being mapped

onto the same assigned quantized length in both patches).

This initial parametrization can then be optimized with one of the

various strategies proposed in recent years, e.g. [Rabinovich et al.

2017; Shtengel et al. 2017]. Note that during this optimization most

of the vertices which were assigned to fixed positions for the per-

patch parametrizations can now freely move in the parametrization

domain. In particular this means that all non-aligned free boundaries

Table 1. Statistics. From left to right: Model and figure number, number of
triangles, number of singular vertices, number of arcs in the T-Mesh, timings
for surface partitioning (tp ), quantization (tq ), T-mesh re-embedding (tr ),
and final parametrization optimization (to ). All times in seconds.

Mesh #T #S #A tp tq tr to

Beetle (11) 38726 9 299 0.0318 0.0433 0.0624 7.94

Hand (11) 3000 36 344 0.0052 0.0306 0.0291 1.83

Face (11) 62467 24 432 0.0474 0.0784 0.1491 15.9

Simple (11) 1444 4 99 0.0024 0.0063 0.0072 0.11

Train Station (12 left) 2546 8 243 0.0050 0.0335 0.0109 0.94

Train Station (12 center) 2546 8 245 0.0049 0.0383 0.0152 1.10

Train Station (12 right) 2546 8 239 0.0048 0.0253 0.0233 1.14

Flat Roof (13 left) 40000 1 24 0.0056 0.0005 0.0005 8.13

Flat Roof (13 center) 40000 8 88 0.0102 0.0019 0.0389 13.0

Dome Roof (13 right) 10000 5 96 0.0086 0.0023 0.0098 1.35

Wing Profile (14) 14463 0 25 0.0021 0.0006 0.0005 1.76

Six (15) 3109 4 173 0.0038 0.0119 0.0135 0.62

Exclamation (16) 1976 0 52 0.0019 0.0033 0.0040 0.22

that were preliminarily mapped onto rectangular shapes in the

individual patch parametrizations are now free to assume any shape

beneficial to yield low distortion energy (cf. Figure 10).

7 RESULTS
We present results of our algorithm for a variety of different use

cases. Input parametrizations for our method were obtained by

minimizing the (continuous) parametrization objective of [Bommes

et al. 2009] with local injectivity constraints [Bommes et al. 2013a].

The objective favors directional alignment of the parametrization

to a given cross field, which in turn is obtained as the smoothest

cross field interpolating salient principal curvature direction as com-

puted by [Campen et al. 2016]. Final optimization of the output,

after locally-injective initialization as described in Section 6.2, was

performed using a Newton solver with the objective of minimizing

the difference between output integer grid map and input parame-

trization F , while preserving local injectivity, seamlessness, and

assigned integer values.

Runtimes. In Table 1 we give an overview of the times taken by

the stages of our algorithm, measured on a desktop machine using

a single-threaded implementation. Note that the overall runtime is

dominated by the final off-the-shelf distortion minimization, while

the generation of the initial quantized trimmed integer grid map

by our three central stages – partitioning, quantization, and re-

embedding – typically makes up less than 5% of the total runtime.

General Quad Meshing. Figures 1 and 11 show exemplary result-

ing quad meshes of our algorithm with and without boundary align-

ment on a variety of different input meshes. We also report his-

tograms of the quad angle deviation from π/2 at inner vertices and
of the quad edge lengths. Note how for meshes with free boundaries

the angle stays closer to π/2 and the edge length distribution has

lower variance. In some cases (e.g. the hand model) free boundaries

do not give a significant benefit, but in general free boundaries

should not lead to worse quality than aligned boundaries, as free

boundaries are free to align if this is beneficial for lower distortion.

In Figure 12we compare results obtained for varying user-specified

target edge lengths for a model with a strongly curved boundary. In

such cases the effect of free boundaries is particularly significant.

Architectural Design. In Figure 13 trimmed quad meshes com-

puted with our method for two different structures, a flat and a
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Fig. 11. Comparison of quad meshes extracted from integer grid maps with
free (blue) and aligned (orange) boundaries. The upper histogram shows the
absolute angle deviation from π/2, the lower one shows a histogram of the
quad edge lengths normalized at 1 for the requested target edge length.

Fig. 12. Comparison of quad meshes with free (blue) and aligned (orange)
boundaries, for a range of different user-prescribed target edge lengths.
Notice how, while a principal curvature direction driven guiding field was
used, the forced boundary alignment in the top row leads to an increased
number of singularities (red and blue spheres) which in turn prevent a coarse
solution and cause badly oriented elements.

domed roof, are shown. The free-boundary setting enables accurate

alignment of mesh edges to the principal directions of stress. The

Fig. 13. Three examples of quadmeshes aligned to principal stress directions
on simple flat and domed roofs. These roofs are supported on their four
corners and are subject to gravitational forces due to their own weight. In
the central example an additional force is applied at the center. The insets
show the magnitude of the maximal stress vector color coded from minimal
(blue) to maximal (red) for illustration.

Fig. 14. Meshes for wing profiles. Left with alignment to all boundaries,
right only aligned to the wing.

resulting quad meshes could serve as a basis for the construction of

efficient structures (e.g. consisting of beams or folds) which benefit

from such alignment.

Finite Element Simulation. Many numeric simulation methods

benefit from well structured quad meshes in order to yield quick

and accurate results. Typically singularities are not desired as they

require special treatment or lead to less accuracy. Meshing the

simulation domain around the wing profile in Figure 14 without

boundary alignment allows for a resulting quad mesh with fewer

singularities.

Tiled Texturing. Covering surfaces with repetitive structures or

tiled textures [Akleman et al. 2005] essentially requires a parametri-

zation that induces a grid structure, i.e. an integer grid map. Depend-

ing on the concrete scenario, singular points may or may not be

acceptable or required, and boundary-alignment may be beneficial

or uncalled for. Figure 15 shows an example of a symmetric struc-

tural pattern imposed on a surface by means of a free-boundary

integer grid map.

Fig. 15. Example of a semi-regular structure created on a surface by means
of a free-boundary integer grid map.
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Trimmed Parametric Surfaces. When parametrically representing

surfaces (e.g. using NURBS), gridded surface parametrizations are

naturally involved. For trimmed variants thereof, these correspond

to free-boundary parametrizations. Figure 16 shows a very simple

example obtained using our method for illustration; note that in

the depicted free-boundary case there are no singularities (i.e. an

integer grid map is unnecessarily general for this case), but for more

complex surfaces and more general representations (e.g. NURCCS

or NURSSes [Sederberg et al. 2003]) singular points can as well be

of interest.

Fig. 16. Left: boundary-aligned integer grid map. Right: free-boundary inte-
ger grid map. Such parametrizations are relevant for constructing represen-
tations using untrimmed or trimmed parametric surfaces, respectively.

8 LIMITATIONS & FUTURE WORK
As an extension of the quantized global parametrization algorithm

[Campen et al. 2015] our algorithm shares many of its properties,

including some of its limitations. Most importantly, our algorithm,

like QGP, employs a geometrically guided but greedy quantization

approach for efficiency. Thus, the results are not guaranteed to be

globally optimal.

We opted to tailor our method to the setting of topologically

non-complex (simply-connected) trimmed quads such that our T-

mesh construction ensures all patches to be sub-rectangular and

only of the types illustrated in Figure 5. We believe this limited

structural element variety is reasonable and even of value in many

use cases. If however, for some application one would like to support

non-simply-connected trimmed quads in the output mesh (i.e. quad

elements with (multiple) internal holes, as

shown in the inset), this would require some

non-trivial modifications since our approach, as

it is, always refines the motorcycle graph such

that no boundary loops remain fully contained

within one patch. In situations with holes that

are smaller than the target quad size, one could

fill such small holes in the input mesh, compute the integer grid

map, and finally remove the hole fillings, thereby re-introducing

the holes – even inside single quads (cf. Section 3.2.1).

Like previous work, e.g. [Bommes et al. 2013a, 2009; Campen et al.

2015; Kälberer et al. 2007], our method makes use of a continuous

(i.e. non-quantized) seamless parametrization as input; the quantiza-

tion is determined based on it. Computing such a parametrization is

a hard problem, in particular when additional constraints (concern-

ing singularity positions and indices, iso-line connectivity, etc.) are

to be respected. In particular, when formulated as an optimization

problem, non-convexity poses robustness challenges.

The work of [Myles et al. 2014], based on cross field tracing,

provides a particularly robust method to construct such a continuous

seamless parametrization, with only mild limitations concerning the

exact preservation of prescribed singularities. It would thus be one

natural choice for the generation of input parametrizations for our

method in a reliable quad mesh generation pipeline – if it supported

non-aligned boundaries.

Assuming that method could be generalized to the free-boundary

setting, its combination with our method would be a pretty re-

dundant approach, though: both methods make use of a number

of similar tools and data structures, e.g. (different variants of) the

motorcycle graph, that would be recomputed and reapplied. Investi-

gation of how the two methods could best be married to obtain an

efficient integrated approach (which furthermore supports the free-

boundary scenario) is thus an interesting avenue for future work.

Essentially, one can imagine our method being adapted to operate on

a (much easier to compute) input cross field rather than a seamless

parametrization. Our free-boundary extensions of the motorcycle

graph construction and the T-mesh re-embedding would have to

be adjusted to this setting. To which extent the observations and

results of [Myles et al. 2014] can be adopted in this free-boundary

context will have to be evaluated.
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A APPENDIX

A.1 Sub-Rectangularity
On a patch p, let dθ/dx be the angular change of the parametric

boundary tangent direction when traveling along the patch bound-

ary ∂p. Our sign convention is such that dθ/dx > 0wherep is locally
convex (i.e. the boundary bends inwards with respect to the patch’s

interior), and dθ/dx < 0 where p is locally concave. Note that dθ/dx
is not defined at corners, where ∂p is non-smooth, but we will only

argue in terms of (still meaningful) integrals

∫
dθ across corners.

The patch is bounded by arcs and parts of ∂M . We define as

black segment (cf. Figure 5) a maximal connected sub-curve of ∂p
that runs along one or more arcs of the same parametric direction;

the case of more than one such arc may occur due to T-joints. A red
segment (cf. Figure 5) is defined as a maximal connected sub-curve

of ∂p coinciding with a part of ∂M . Note that dθ/dx = 0 every-

where along each black segment, as they are parametrically straight.

Proof of Proposition 4.1: Along the boundary ∂p of each patch

p, a black segment can directly follow a black segment, or exactly

one red segment can be in between. A red segment cannot directly

follow a red segment by definition asmaximal connected component.

Traveling from a point a on a black segment to a point b on a

directly following black segment, we have

∫ b
a dθ = π/2 (by the

way arcs intersect). Traveling from a point a on an black segment

to a point b on an indirectly following black segment, we have∫ b
a dθ ≥ π/2; this is because this value necessarily is an integer

multiple of π/2 (as arcs are alignedwith iso-lines) and
∫ b
a dθ = −kπ/2

for an integerk ≥ 0would imply that there are at leastk+1 > 0 peak

points along the intermediate red seg-

ment, as depicted in the inset for k = 0

and k = 1 – which would have spawned

motorcycles, creating arcs, thus black

segments, contradicting the premise

that these points are in the interior of

a red segment. Thus in any case, the
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signed total rotation traveling from one black segment to the (not

necessarily distinct) next is at least π/2, thus positive.
Let b1, . . . ,bn be the n ≥ 1 connected components (boundary

loops) of ∂p. For each loop bi we distinguish two cases:

• bi contains a black segment: It is not possible that bi consists
solely of a single black segment; the corresponding arc(s)

must stem from a seed point, which would have spawned

orthogonal traces as well. Thus there is at least one more

black or red segment. In both cases it follows that the total

rotation Θi :=
∫
bi
dθ is positive.

• bi contains no black segment: This meansbi is a single red seg-
ment, so we haveΘi > −π/2, as otherwise a peakwould neces-
sarily be contained. As dθ/dx is defined relative to a seamless

parametrization (with transitions involving rotations about

multiples of π/2 only), it generally holds Θi = kπ/2 for some

integer k . It follows that the total rotation Θi is non-negative.
Lemma A.1 (stated in Appendix A.2) asserts that

∑
i Θi ≤ 0 if there

is more than one boundary loop, and

∑
i Θi < 0 if there are more

than two.

This leaves only three options:

(1) there is one purely red boundary loop

(2) there are two purely red boundary loops

(3) there is one boundary loop involving black segments

Cases 1 and 2 imply that the patch covers the entire surface (a

topological disk or annulus, respectively, free of singular points)

and the motorcycle graph is empty. As, however, at least one node

is added as seed in any case (cf. Section 4), these cases cannot occur.

It follows that the only possible case is that of a single boundary

loop b1 containing black segments and, according to Lemma A.1,

Θ1 = 2π . This implies that there are at most four black segments,

one of each parametric direction (cf. Figure 5). Thus there exist axis-

aligned rectangles (a unique one if there are four black segments)

that match the black segments in the parametric image Ω of the

patch; in the terms of Definition 3.2: ∂aΩ ⊆ ∂R. Furthermore, if

there are red segments involved, these cannot fall back behind their

adjacent black segments (they would contain peak points), thus

the rectangle R is (or can be chosen) such that all red segments

are contained in its interior, thus Ω ⊆ R. Hence patch p is sub-

rectangular by Definition 3.2. □

A.2 Total Rotation along Patch Boundary
Lemma A.1. Let b1, . . . ,bn be the n ≥ 1 connected components

(loops) of the boundary ∂p of a patch p, and Θi =
∫
bi
dθ the signed

total rotation along boundary loopbi (sign convention as in Section 4.1)
in input parametrization F . Then it holds

∑
i Θi = 2π (2 − n).

Proof. Consider n − 1 mutually non-intersecting simple curves

γi embedded in the patch such that γi connects boundary loops bi
and bi+1. Let p

′
be the disk-topology patch obtained by cutting p

along these curves. Remember that the input parametrization F is

regular everywhere inside p′ – because singular points are nodes,

thus not inside patches. Like for any disk-topology region with

regular parametrization, for p′ it thus holds
∫
∂p′ dθ = 2π . By the

structure of the boundary ∂p′, on the other hand, we also have∫
∂p′ dθ =

∑
i Θi + 2π (n − 1). Note that terms involving integrals

along γi cancel, as each such curve appears twice, in forward and

backward direction, along ∂p′. The term 2π (n − 1) is due to the

corners formed where γ curves and b loops meet. Assuming, w.l.o.g.,

the curves were chosen such that they intersect the boundary loops

at parametrically smooth points, at each such intersection point

they form a pair of parametric angles summing to π – and there are

2(n − 1) such points.

Combining these two equations for

∫
∂p′ dθ yields the result. □

A.3 Re-Embedding of Zero-Arcs
Proof of Proposition 6.1: The only restriction for the applicability

of the zero-arc collapse is that the arc needs to be collapsible. For

an arbitrary quantization, it could thus be the case that no operator

can be applied anymore while zero-arcs are still present. We show

that this does not occur with the quantizations obtained using the

method from Section 5, satisfying the free-boundary separation test

(Section 5.2.1).

There are three types of non-collapsible arcs, depending on the

types of incident nodes:

(1) critical—critical

(2) critical—border (if the arc is non-border)

(3) border—border (if the arc is non-border)

Case 1. Two critical nodes are separated already by the original

separation test recapped in Section 5.2, due to (virtual) rectangularity

of all patches also in our free-boundary motorcycle graph. Hence,

even after collapsing other zero-arcs and zero-patches, no such

zero-arc between the two critical points can occur.

Case 2. As we treat boundary arcs and virtual arcs as critical

in our free-boundary separation test, critical nodes are separated

from these. A border node (whether initially on the boundary, or

in the course of the re-embedding process collapsed onto it), by

contrast, obviously is non-separated from these boundary/virtual

arcs (otherwise it would not be on, or would not have been collapsed

onto the boundary). Hence no such zero-arc between a critical point

and a border node can occur.

Case 3. As boundary nodes are used as separation test source

in our free-boundary separation test, the non-separation of two

boundary points is recognized – but ignored if these are connected

by a zero-path along the surface boundary (cf. Section 5.2). A non-

border zero-arc a between two non-critical border nodes may thus

indeed occur (in contrast to cases 1 and 2); however, only if these

two border nodes are additionally connected by a path of border

zero-arcs. As these border zero-arcs are collapsible, the two incident

nodes of a will eventually be collapsed onto a common point on

the surface boundary via these. The arc a thereby turns into a loop

(same start and end point), which can be contracted to a point.

Finally, it is easy to see that the number of zero-arcs to be col-

lapsed is finite (i.e. the re-embedding process terminates): While

operator 2 creates (a finite number of) additional zero-arcs within

a (non-simple) zero-patch, the subsequent application of operators

1 and 3 is able to collapse these while at the same time reducing

the total number of yet-to-be-collapsed zero-patches relative to the

state before operator 2 was applied. This strictly monotonic decrease

asserts termination after a finite number of operations. □
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